预掘回撤通道末采应力叠加效应及围岩破坏规律分析
作者:
中图分类号:

TD353

基金项目:

国家自然科学基金项目(51864036);内蒙古自治区高等学校青年科技英才支持计划项目(NJYT-19-B33)。


Analysis on the superposition effect of stress and the failure law of surrounding rock during the last mining period of pre-excavation return channel
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    为得到末期期间回撤通道围岩破坏控制方法,通过数值模拟对回撤通道周围集中应力与工作面采动支承压力叠加效应及围岩破坏规律进行分析,并开展了现场验证。研究结果表明:随着工作面与回撤通道距离减小,叠加应力值逐渐增加且向回撤通道正帮转移,导致回撤通道破坏由正帮侧向工作面方向移动。由于应力叠加效应增强,工作面在距离回撤通道20 m时,随着工作面推进,顶板塑性破坏由原先稀疏破坏变为密集破坏。工作面与回撤通道间的煤柱破坏前,工作面靠近回撤通道过程中回撤通道正副帮均发生破坏,且在煤柱小于5 m时正帮破坏较副帮严重,煤柱全部破坏后,顶板失去支撑,导致回撤通道顶板回转,顶底板破坏范围相应增加。控制回撤通道正帮的稳定性是控制回撤通道大变形的关键。

    Abstract:

    In order to obtain the control method of the pre-excavation return channel surrounding rock failure in the last mining, the superposition effect of the concentrated stress around the return channel and the mining supporting pressure, and the law of surrounding rock failure were analyzed through numerical simulation, and the field verification was carried out. The results show that with the decrease of the distance between the working face and the return channel, the superimposed stress increases gradually and is transferred to the positive side of the return channel, and the failure of the return channel moves from the front side to the working face. Because of the stress superposition effect, when the working face is 20 m away from the return channel, the plastic failure of roof changes from sparse failure to dense failure. Before the failure of coal pillar between the working face and the return channel, the deformation and failure of the back channel mainly occurr at the front side of the return channel. The damage of the front side is more serious than that of the auxiliary side when the coal pillar is less than 5 m. When the coal pillars are completely destroyed, the roof lost support, resulting in roof rotation, and the scope of the roof and floor damage increases correspondingly. It is suggested that the key to control the large deformation of the return channel is to control the stability of the front side of the return channel.

    参考文献
    [1] 张鑫. 特厚顶煤预掘回撤通道动压扰动支护技术研究[J]. 山西焦煤科技, 2019, 43(9):37-40.Zhang X. Research on support technology for pre-excavation and retreating roadway of dynamic pressure disturbance in extra-thick roof coal[J]. Shanxi Coking Coal Science & Technology, 2019, 43(9):37-40. (in Chinese)
    [2] 张金虎. 破碎顶板回撤通道围岩运动规律和支护适应性研究[J]. 煤炭科学技术, 2015, 43(12):28-31. Zhang J H. Study on movement law of surrounding rock and support adaptability of the broken roof in return channel[J]. Coal Science and Technology, 2015, 43(12):28-31. (in Chinese)
    [3] 杨宝贵, 马念杰, 杨胜利, 等. 煤矿井下采煤工作面回撤通道充填回撤方法:CN106968671B[P]. 2019-10-01. Yang B G, Ma N J, Yang S L, et al. The method of back filling and back withdrawing in the back channel of coal mining face:CN106968671B[P]. 2019-10-01. (in Chinese)
    [4] 吕坤, 赵志超, 赵志强. 特厚煤层综放工作面回撤通道支护技术研究[J]. 煤炭科学技术, 2018, 46(3):39-43. Lyu K, Zhao Z C, Zhao Z Q. Study on support technology of equipment removal channel in fully-mechanized top coal caving face in ultra-thick seam[J]. Coal Science and Technology, 2018, 46(3):39-43. (in Chinese)
    [5] 王晓振, 鞠金峰, 许家林. 神东浅埋综采面末采段让压开采原理及应用[J]. 采矿与安全工程学报, 2012, 29(2):151-156. Wang X Z, Ju J F, Xu J L. Theory and applicable of yield mining at ending stage of fully-mechanized face in shallow seam at Shendong mine area[J]. Journal of Mining & Safety Engineering, 2012, 29(2):151-156. (in Chinese)
    [6] 郭浩森, 李化敏, 李东印, 等. 重型综放工作面快速回撤与末采期顶板控制技术[J]. 煤炭科学技术, 2012, 40(10):34-36, 40. Guo H S, Li H M, Li D Y, et al. Rapid equipment withdrawing from heavy fully mechanized top coal caving mining face and roof control technology during mining terminal period[J]. Coal Science and Technology, 2012, 40(10):34-36, 40. (in Chinese)
    [7] 吴志刚, 田西勇. 大采高工作面回撤通道矿压规律实测[J]. 煤矿开采, 2013, 18(6):78-80. Wu Z G, Tian X Y. Underground pressure rule observation in dismantle roadway of large-mining-height mining face[J]. Coal Mining Technology, 2013, 18(6):78-80. (in Chinese)
    [8] 吕华文. 预掘回撤通道稳定性机理分析及应用[J]. 煤炭学报, 2014, 39(S1):50-56. Lü H W. The mechanism of stability of pre-driven rooms and the practical techniques[J]. Journal of China Coal Society, 2014, 39(S1):50-56. (in Chinese)
    [9] 谷拴成, 王博楠, 黄荣宾, 等. 综采面末采段回撤通道煤柱荷载与宽度确定方法[J]. 中国矿业大学学报, 2015, 44(6):990-995. Gu S C, Wang B N, Huang R B, et al. Method for determining the load on and width of coal pillar at the recovery room end of fully-mechanized longwall mining[J]. Journal of China University of Mining and Technology, 2015, 44(6):990-995. (in Chinese)
    [10] Litwiniszyn J. Rarefaction shock waves, outbursts and consequential coal damage[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1990, 27(6):535-540.
    [11] Gao F Q, Stead D, Kang H P. Numerical simulation of squeezing failure in a coal mine roadway due to mining-induced stresses[J]. Rock Mechanics and Rock Engineering, 2015, 48(4):1635-1645.
    [12] Wang H W, Jiang Y D, Xue S, et al. Assessment of excavation damaged zone around roadways under dynamic pressure induced by an active mining process[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 77:265-277.
    [13] Wang C, Wang Y, Lu S. Deformational behaviour of roadways in soft rocks in underground coal mines and principles for stability control[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(6):937-946.
    [14] Yang X J, Hu C W, Liang J H, et al. A case study on the control of large deformations in a roadway located in the Du'erping coal mine in China[J]. Advances in Materials Science and Engineering, 2019, 2019:1-13.
    [15] Shen B T. Coal mine roadway stability in soft rock:a case study[J]. Rock Mechanics and Rock Engineering, 2014, 47(6):2225-2238.
    [16] Jiang L S, Kong P, Shu J M, et al. Numerical analysis of support designs based on a case study of a longwall entry[J]. Rock Mechanics and Rock Engineering, 2019, 52(9):3373-3384.
    [17] 李俊平, 连民杰. 矿山岩石力学[M]. 北京:冶金工业出版社, 2011. Li J P, Lian M J. Mine rock mechanics[M]. Beijing:Metallurgical Industry Press, 2011. (in Chinese)
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

贺艳军,张金山,陈凯,王帅,石占山,李建伟.预掘回撤通道末采应力叠加效应及围岩破坏规律分析[J].重庆大学学报,2022,45(2):58-67.

复制
分享
文章指标
  • 点击次数:404
  • 下载次数: 695
  • HTML阅读次数: 541
  • 引用次数: 0
历史
  • 收稿日期:2020-06-02
  • 在线发布日期: 2022-02-16
文章二维码