滹沱河地下水超采区人工回灌的水岩相互作用模拟
作者:
中图分类号:

P641.3

基金项目:

中国地质科学院基本科研项目(SK202003,YYWF201728);国家"十三五"重点研发计划课题(2016YFC0502601)。


Water-rock interaction simulation of artificial recharge in the groundwater over-exploited area of the Hutuo River Basin
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    人工回灌条件下回灌水与地下水混合带的水—岩相互作用是决定地下水水质演化和含水层发生化学堵塞的关键过程。为研究人工回灌对滹沱河地下水超采区水质演化的影响,以石家庄市人工回灌场地为例,利用石津灌渠水作为回灌水源,通过室内实验结合反向水文地球化学模拟揭示回灌层位地表水与地下水混合带的水-岩相互作用机理。结果显示:混合带水的TDS(total dissolved solids)变化特征表现为先增大后缓慢降低,且地表水占比越大、含水介质粒径越细,则其变幅越大;混合带水中主要离子质量浓度变化特征受混合、碳酸平衡、溶解-沉淀、阳离子交换及硝化作用控制,其中K+、Ca2+、SO42-质量浓度主要受溶解-沉淀作用控制,Na+、Cl-、HCO3-、NO3-质量浓度主要受混合NO3-作用控制,Mg2+质量浓度主要受阳离子交换作用控制;水—岩相互作用过程中溶解的矿物有石膏、钠长石、钾长石及盐岩,析出的矿物有方解石、钙蒙脱石及石英,且在地表水占比越大、含水介质粒径越细的层位,方解石的沉淀量越大,表明在粒径较细的回灌层位存在碳酸岩盐的化学堵塞风险。

    Abstract:

    The water-rock interaction in the recharge water and groundwater mixed zone of aquifer under artificial recharge is the key process that determines the evolution of groundwater quality and leads to the chemical clogging of aquifer. To study the effect of artificial recharge on the groundwater quality evolution in the groundwater over-exploited area of the Hutuo River Basin, taking the groundwater artificia recharge site in Shijiazhuang as an example and using the Shijin irrigation canal water as the recharge water, we revealed the mechanism of water-rock interaction of surface water and groundwater mixed zone in the aquifer by carrying out the laboratory experiments and reverse hydrogeochemical simulation. The results show that the evolution characteristics of total dissolved solids(TDS) in the mixed zone firstly increase and then slowly decrease. The larger the proportion of surface water mixed with water is and the smaller the particle size of medium is, the larger the variation amplitude of TDS is. The change of main ion concentrations is controlled by mixing action, carbonic acid balance, dissolution-precipitation, cation exchange and nitrification. Among them, the concentrations of K+, Ca2+and SO42- are mainly controlled by dissolution-precipitation, the concentrations of Na+, Cl-, HCO3-, NO3- are mainly controlled by mixing action, and the concentration of Mg2+ is mainly controlled by cation exchange. In the water-rock reaction, the dissolved minerals include anhydrite, albite, K-feldspar and halite, whereas the precipitated minerals included calcite, calcium montmorillonite and quartz. Moreover, in the aquifer with larger proportion of surface water and finer particle size of medium, the calcite precipitation is greater, indicating that there is a high risk of carbonate chemical clogging in the recharge aquifer with fine particle size when the surface water is the recharge source.

    参考文献
    [1] 田夏, 李亚松, 费宇红, 等. 滹沱河超采区地下水硫酸盐来源识别及迁移转化[J]. 科学技术与工程, 2020, 20(7):2583-2589. Tian X, Li Y S, Fei Y H, et al. Sulfate source identification, migration and transformation in the groundwater over-exploited area of the Hutuo River Basin[J]. Science Technology and Engineering, 2020, 20(7):2583-2589. (in Chinese)
    [2] Zeng C F, Zheng G, Xue X L, et al. Combined recharge:a method to prevent ground settlement induced by redevelopment of recharge Wells[J]. Journal of Hydrology, 2019, 568:1-11.
    [3] Hussain F, Hussain R, Wu R S, et al. Rainwater harvesting potential and utilization for artificial recharge of groundwater using recharge Wells[J]. Processes, 2019, 7(9):623.
    [4] Yang Y, Zhang D S, Li B H, et al. Study on the influence of multi-source recharge on groundwater environment[J]. Environmental Engineering and Management Journal, 2019, 18(6):1367-1378.
    [5] Li C Z, Li B H, Bi E P. Characteristics of hydrochemistry and nitrogen behavior under long-term managed aquifer recharge with reclaimed water:a case study in North China[J]. Science of the Total Environment, 2019, 668:1030-1037.
    [6] 李贺强, 邢国平, 王超. 雨水回灌对深层承压含水层水质影响的模拟研究[J]. 水土保持通报, 2015, 35(1):139-142. Li H Q, Xing G P, Wang C. Simulation study on effects of stormwater recharge on deep confined aquifer water quality[J]. Bulletin of Soil and Water Conservation, 2015, 35(1):139-142. (in Chinese)
    [7] Hashemi H, Berndtsson R, Persson M. Artificial recharge by floodwater spreading estimated by water balances and groundwater modelling in arid Iran[J]. Hydrological Sciences Journal, 2015, 60(2):336-350.
    [8] 郑凡东, 刘立才, 杨牧骑, 等. 南水北调水源北京西郊回灌的水岩相互作用模拟[J]. 水文地质工程地质, 2012(6):22-28. Zheng F D, Liu L C, Yang M Q, et al. Simulation of water-rock interaction in the injection of water from the Southto-North Diversion Project to the aquifer in the western suburb of Beijing[J]. Hydrogeology & Engineering Geology, 2012(6):22-28. (in Chinese)
    [9] Shi X Q, Jiang S M, Xu H X, et al. The effects of artificial recharge of groundwater on controlling land subsidence and its influence on groundwater quality and aquifer energy storage in Shanghai, China[J]. Environmental Earth Sciences, 2016, 75(3):195.
    [10] 苏小四, 谷小溪, 孟婧莹, 等. 人工回灌条件下多组分溶质的反应迁移模拟[J]. 吉林大学学报(地球科学版), 2012, 42(2):485-491. Su X S, Gu X X, Meng J Y, et al. Fate and transptort simulation of multi-component solute under artificial recharge conditions[J]. Journal of Jilin University(Earth Science Edition), 2012, 42(2):485-491.(in Chinese)
    [11] 李倩雯, 邢国章, 孙红福, 等. 北京西郊浅层地下水回灌的水质预测[J]. 南水北调与水利科技, 2019, 17(3):105-114, 115. Li Q W, Xing G Z, Sun H F, et al. Water quality prediction of shallow groundwater recharge in the western suburbs of Beijing[J]. South-to-North Water Transfers and Water Science & Technology, 2019, 17(3):105-114, 115. (in Chinese)
    [12] Pavelic P, Dillon P J, Barry K E, et al. Water quality effects on clogging rates during reclaimed water ASR in a carbonate aquifer[J]. Journal of Hydrology, 2007, 334(1/2):1-16.
    [13] Vanderzalm J L, Page D W, Barry K E, et al. A comparison of the geochemical response to different managed aquifer recharge operations for injection of urban stormwater in a carbonate aquifer[J]. Applied Geochemistry, 2010, 25(9):1350-1360.
    [14] Medina D A B, Berg G A V D, Breukelen B M V, et al. Colmatação com hidróxidos de ferro de furos de abastecimento público que recebem recarga artificial:observaçoes hidrogeológicas e hidroquímicas na vizinhança e no interior do furo[J]. Hydrogeology Journal, 2013, 21(7):1393-1412.
    [15] 刘立才, 郑凡东, 李炳华, 等. 南水北调水源在密怀顺水源地回灌的地下水水质变化试验[J]. 水文地质工程地质, 2015, 42(4):18-22, 55. Liu L C, Zheng F D, Li B H, et al. Experiment of groundwater quality change for simulating the South-to-North water into the Mihuaishun aquifer[J]. Hydrogeology and Engineering Geology, 2015, 42(4):18-22, 55.(in Chinese)
    [16] 刘鹏飞, 刘少玉, 王哲, 等. 滹沱河冲洪积扇浅部回灌层井灌动态分析及回渗能力探究[J]. 科学技术与工程, 2016, 16(30):27-31. Liu P F, Liu S Y, Wang Z, et al. Analysis of dynamics of the well recharge and exploration of the recharge infiltration ability in the shallow recharge layer of the alluvial fan of Hutuo river[J]. Science Technology and Engineering, 2016, 16(30):27-31. (in Chinese)
    [17] Magaritz M, Nadler A, Koyumdjisky H, et al. The use of Na/Cl ratios to trace solute sources in a semiarid zone[J]. Water Resources Research, 1981, 17(3):602-608.
    [18] Lakshmanan E, Kannan R, Senthil Kumar M. Major ion chemistry and identification of hydrogeochemical processes of ground water in a part of Kancheepuram district, Tamil Nadu, India[J]. Environmental Geosciences, 2003, 10(4):157-166.
    [19] Kumar P, Singh C K, Saraswat C, et al. Evaluation of aqueous geochemistry of fluoride enriched groundwater:a case study of the Patan district, Gujarat, Western India[J]. Water Science, 2017, 31(2):215-229.
    [20] Salcedo Sánchez E R, Garrido Hoyos S E, Esteller M V, et al. Hydrogeochemistry and water-rock interactions in the urban area of Puebla Valley aquifer (Mexico)[J]. Journal of Geochemical Exploration, 2017, 181:219-235.
    [21] 赵蓓, 李玉仙, 王敏, 等. 北方某市供水管网对丹江口水适应性预测方法研究[J]. 给水排水, 2015, 41(4):104-109. Zhao B, Li Y X, Wang M, et al. Study on the prediction method on the adaptability of the water supply network on the raw water from Danjiangkou reservoir in a North China City[J]. Water & Wastewater Engineering, 2015, 41(4):104-109.(in Chinese)
    [22] 闫雅妮, 马腾, 张俊文, 等. 地下水与地表水相互作用下硝态氮的迁移转化实验[J]. 地球科学, 2017, 42(5):783-792. Yan Y N, Ma T, Zhang J W, et al. Experiment on migration and transformation of nitrate under interaction of groundwater and surface water[J]. Earth Science, 2017, 42(5):783-792. (in Chinese)
    [23] Jeong H Y, Jun S C, Cheon J Y, et al. A review on clogging mechanisms and managements in aquifer storage and recovery (ASR) applications[J]. Geosciences Journal, 2018, 22(4):667-679.
    [24] Du X Q, Wang Z J, Ye X Y. Potential clogging and dissolution effects during artificial recharge of groundwater using potable water[J]. Water Resources Management, 2013, 27(10):3573-3583.
    [25] Lu Y, Du X Q, Yang Y S, et al. Compatibility assessment of recharge water with native groundwater using reactive hydrogeochemical modeling in Pinggu, Beijing[J]. CLEAN:Soil, Air, Water, 2014, 42(6):722-730.
    [26] 钟佐燊. 地下水有机污染控制及就地恢复技术研究进展(二)[J]. 水文地质工程地质, 2001, 28(4):26-31. Zhong Z S. Research progress of groundwater organic pollution control and on-site restoration technology (II)[J]. Hydrogeology & Engineering Geology, 2001, 28(4):26-31. (in Chinese)
    [27] 李军, 张翠云, 蓝芙宁,等. 区域地下水不同深度微生物群落结构特征[J]. 中国环境科学, 2019, 39(6):2614-2623. Li J, Zhang C Y, Lan F N, et al. Structure characteristics of microbial community at different depths of groundwater[J]. China Environmental Science, 2019, 39(6):2614-2623. (in Chinese)
    相似文献
    引证文献
引用本文

耿新新,张凤娥,朱谱成,马琳娜,陈立,郭春艳.滹沱河地下水超采区人工回灌的水岩相互作用模拟[J].重庆大学学报,2022,45(2):81-93.

复制
分享
文章指标
  • 点击次数:417
  • 下载次数: 627
  • HTML阅读次数: 937
  • 引用次数: 0
历史
  • 收稿日期:2020-05-20
  • 在线发布日期: 2022-02-16
文章二维码