超长煤巷监测数据背景CO筛查及自燃预判研究
作者:
中图分类号:

TD752.2

基金项目:

国家自然科学基金资助项目(51774170,51574143);国家重点研发计划项目(2018YFC0807901)。


Study on background CO screening and spontaneous combustion prediction in monitoring data of super long coal roadway
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了解决超长双煤巷自燃发热的早期预报问题,在自燃标志气体分析法失效的情况下,运用井下监测系统大数据的CO趋势分析法。为了筛除井下柴油机动车尾气产生CO的波动干扰,创新提出能够仅反映煤相对缓慢氧化的背景CO体积分数的概念;对矿井某一独立通风的考察区域,在某一足够长的时间段内,总能找到所有柴油车都不工作的极端时刻(或不受尾气干扰的情况),且CO体积分数值被监测系统记录到,从而建立了背景CO体积分数的筛查方法;经时间单元周期为0.125 d和0.5 d时的筛查结果对比,随着考察时间单元的取大,CO体积分数曲线越来越低,波动减小,背景CO体积分数曲线越来越清晰,证明其客观存在性。以最短自然发火期的一部分为考查期,依据背景CO体积分数的趋势走势来预判煤柱自然发火,结合红庆梁煤矿经验,得到CO趋势递增率k1*=0.607×10-6 d-1,以此作为自燃危险预判的临界指标,将自燃危险预警分三级,即当k1 k1*,一级预警,启动重点巡查,将超长距离巷道每天全面巡查,改升级到为有针对性加大人力物力的重点巡查;当k1k1*,二级预警,查明原因;当k1≤0,无自燃危险。预测结果满足工程要求。

    Abstract:

    To realize early prediction of spontaneous combustion of overlong double coal roadway, this paper proposes a CO trend analysis method based on the big data of the underground monitoring system when the spontaneous combustion mark-gas analysis method is invalid. Meanwhile, to screen out and remove fluctuation disturbance of CO caused by underground diesel vehicle exhaust, the concept of background CO volume fraction which can only reflect the relatively slow oxidation of coal is put forward. The background CO volume fraction screening method is established on the basis that for an independent ventilated investigation area of a mine, there is always an extreme moment that no diesel vehicle works (or exhaust gas does not interfere all diesel car) in a long enough time, and the CO volume fraction value is recorded by the monitoring system. Through the comparison of the screening results of a 0.125-day time unit cycle and a 0.5-day time unit cycle, it is found that as the time unit increases, the CO volume fraction curve becomes lower, the fluctuation decreases, and the background CO volume fraction curve becomes clearer, suggesting the objective existence of background CO volume fraction. Taking a part of the shortest spontaneous combustion period as the examination period, the spontaneous combustion of coal pillars is predicted based on the trend development of the background CO volume fraction. Combined with the experience of Hongqingliang coal mine, the CO increasing trend(increasing rate k1*=0.607×10-6 d-1) is obtained as the critical index of spontaneous combustion risk prejudgment. The spontaneous combustion risk warning is divided into three levels. When k1k1*, it is first-level warning, which triggers key inspections, and upgrades the daily comprehensive inspection to the targeted inspection with more manpower and material resources. When k11<k1*, it is second-level alert, which requires to find out the causes. When k1≤0, there is no spontaneous combustion risk. The predicted results meet the engineering requirements.

    参考文献
    [1] 邓军, 徐精彩, 王洪权, 等. 综放面巷道煤层自燃预测技术研究[J]. 煤田地质与勘探, 2002, 30(2):9-11. Deng J, Xu J C, Wang H Q, et al. Predicting techniques for coal spontaneous combustion in the gate close to gob of fully mechanized longwall top-coal caving face[J]. Coal Geology & Exploration, 2002, 30(2):9-11. (in Chinese)
    [2] Beamish B, Barakat M A, St George J D. Spontaneous-combustion propensity of New Zealand coals under adiabatic conditions[J]. International Journal of Coal Geology, 2001, 45(2/3):217-224.
    [3] Mansor S B, Cracknell A P, Shilin B V, et al. Monitoring of underground coal fires using thermal infrared data[J]. International Journal of Remote Sensing, 1994, 15(8):1675-1685.
    [4] 王振平, 程卫民, 辛嵩, 等. 煤巷近距离自燃火源位置的红外探测与反演[J]. 煤炭学报, 2003, 28(6):603-607. Wang Z P, Cheng W M, Xin S, et al. The calculation of close-range coal inflammation position at coal-roads based on infrared detecting and inverse heat conduction technology[J]. Journal of China Coal Society, 2003, 28(6):603-607. (in Chinese)
    [5] 程卫民, 王振平, 辛嵩, 等. 煤巷煤自燃火源红外探测的影响因素及判别方法[J]. 煤炭科学技术, 2003, 31(8):37-40. Cheng W M, Wang Z P, Xin S, et al. Influence factors and identified method of infrared ray probing for coal spontaneous combustion in seam roadway[J]. Coal Science and Technology, 2003, 31(8):37-40. (in Chinese)
    [6] 李宗翔. 综放沿空巷周围煤体自燃升温过程的数值模拟[J]. 煤炭学报, 2004, 29(1):61-65. Li Z X. Numerical simulation of the temperature rise process caused by spontaneous combustion of coal body around roadways along comprehensive mechanized caving mining goaf[J]. Journal of China coal society, 2004, 29(1):61-65. (in Chinese)
    [7] 朱红青, 汪崇鲜, 马辉, 等. 巷道煤柱自燃温度场数值模拟与火源定位的研究[J]. 湖南科技大学学报(自然科学版), 2007, 22(2):1-4. Zhu H Q, Wang C X, Ma H, et al. Study on numerical simulation of spontaneous combustion temperature field and fire source position for coal pillar in roadway[J]. Journal of Hunan University of Science & Technology(Natural Science Edition), 2007, 22(2):1-4.(in Chinese)
    [8] 陈国新, 朱红青. 巷道煤柱高温点分布规律及五区定位法的研究[J]. 煤炭科学技术, 2008, 36(5):49-51, 96. Chen G X, Zhu H Q. Study on distribution law of high temperature points in mine gateway coal pillar and five zone positioning method[J]. Coal Science and Technology, 2008, 36(5):49-51, 96. (in Chinese)
    [9] 邓军, 徐精彩, 王振平, 等. 兖州矿区巷道自燃危险区域等级划分及防火对策[J]. 矿业安全与环保, 2002, 29(5):4-6. Deng J, Xu J C, Wang Z P, et al. Classification of spontaneous combustion hazard regions in roadways and fire prevention countermeasures in yanzhou coal mining area[J]. Mining Safety & Environmental Protection, 2002, 29(5):4-6. (in Chinese)
    [10] 鹿凡玉, 刘来军, 张树杰. 易燃煤层大断面巷道防灭火[J]. 煤矿安全, 1999(9):17-18. Lu F Y, Liu L J, Zhang S J. Fire prevention and extinguishing of large section roadway in flammable coal seam[J]. Safety in Coal Mines, 1999(9):17-18. (in Chinese)
    [11] Muduli L, Jana P K, Mishra D P. A novel wireless sensor network deployment scheme for environmental monitoring in longwall coal mines[J]. Process Safety and Environmental Protection, 2017, 109:564-576.
    [12] Singh A K, Singh R V K, Singh M P, et al. Mine fire gas indices and their application to Indian underground coal mine fires[J]. International Journal of Coal Geology, 2007, 69(3):192-204.
    [13] 于庆. 分布式光纤测温技术在煤矿中的应用[J]. 工矿自动化, 2012, 38(4):5-8. Yu Q. Application of distributed fiber temperature measurement technology in coal mine[J]. Industry and Mine Automation, 2012, 38(4):5-8. (in Chinese)
    [14] Bhattacharjee S, Roy P, Ghosh S, et al. Wireless sensor network-based fire detection, alarming, monitoring and prevention system for Bord-and-Pillar coal mines[J]. Journal of Systems and Software, 2012, 85(3):571-581.
    [15] Muduli L, Jana P K, Mishra D P. Wireless sensor network based fire monitoring in underground coal mines:a fuzzy logic approach[J]. Process Safety and Environmental Protection, 2018, 113:435-447.
    [16] Mishra D P, Sugla M, Singha P. Productivity improvement in underground coal mines:a case study[J]. Journal of Sustainable Mining, 2013, 12(3):48-53.
    [17] 陈晓坤, 于志金. 煤自燃早期预报指标的研究与应用[J]. 煤炭科学技术, 2016, 44(10):13-17, 111. Chen X K, Yu Z J. Study and application on early prediction index of coal spontaneous combustion[J]. Coal Science and Technology, 2016, 44(10):13-17, 111. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李腾,李宗翔,王继仁,杨富强,张春华,贾进章.超长煤巷监测数据背景CO筛查及自燃预判研究[J].重庆大学学报,2022,45(2):94-102.

复制
分享
文章指标
  • 点击次数:384
  • 下载次数: 624
  • HTML阅读次数: 744
  • 引用次数: 0
历史
  • 收稿日期:2020-06-22
  • 在线发布日期: 2022-02-16
文章二维码