粘弹性材料特慢蠕变的局部结构导数本构模型
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

O3

基金项目:

国家自然科学基金资助项目(11702085)。


Local structural derivative constitutive model of ultra-slow creep in viscoelastic materials
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为描述粘弹性材料特慢力学行为,该文给出了局部结构导数本构模型。该模型以lnα(1+t/τ0)为结构函数,物理意义清楚,能够准确描述粘弹性材料特慢力学行为的对数律依赖现象。传统整数阶和分形导数本构模型均不能描述粘弹性材料的特慢力学行为。目前,常用于粘弹性材料特慢力学行为的模型是Lomnitz模型,但该模型是一个经验本构,物理意义不清楚。为比较这4类模型在描述特慢力学行为上的差异,文章以混凝土的特慢蠕变过程为例,结合不同实验条件下的蠕变实验数据,验证了局部结构导数模型在刻画特慢蠕变行为的可行性和有效性。此外,文章也给出了特慢蠕变的局部结构导数Kelvin本构模型,并与上述的局部结构导数Maxwell本构模型进行了对比分析,给出了不同模型的适用范围。

    Abstract:

    In order to describe the ultra-slow mechanical behaviors of viscoelastic materials, a constitutive model based on the local structural derivatives is proposed in this paper, in which lnα(1+t/τ0)is the structural function. The new model has clear physical meaning and can accurately describe the very slow mechanical behaviors of viscoelastic materials, which is logarithmic-law dependent. Both of the traditional integer order and the fractal derivative constitutive models are not capable of quantifying the ultra-slow mechanical behaviors of viscoelastic materials. Currently, the Lomnitz model is commonly used to study the ultra-slow mechanical behaviors of viscoelastic materials, but it is an empirical model with unclear physical meaning. The creep experiment data of concrete under different experimental conditions were employed to compare the four models in analyzing the ultra-slow mechanical behaviors. The fitting results show that the local structural derivative model is feasible and effective in describing ultra-slow creep of the concrete. To give the applicable scope of different models, this paper also provides the local structural derivative Kelvin model to describe ultra-slow creep, which compared with the above mentioned local structural derivative Maxwell constitutive model.

    参考文献
    相似文献
    引证文献
引用本文

管佩瑶,梁英杰.粘弹性材料特慢蠕变的局部结构导数本构模型[J].重庆大学学报,2022,45(3):49-61.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-09-23
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-04-01
  • 出版日期:
文章二维码