飞行汽车变速器齿轮传动可靠性优化设计
作者:
中图分类号:

TH132.46

基金项目:

国家自然科学基金资助项目(U1864210)。


Reliability-based design optimization of flying car speed changer gear transmission
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    飞行汽车作为面向未来空中交通的新型交通工具,齿轮传动可靠性将成为其发展的关键因素。为提高飞行汽车传动系统疲劳可靠性,以某倾转翼飞行汽车试验偏置复合轮变速器作为研究对象,根据飞行任务剖面图编制齿轮传动输入载荷谱。结合应力强度干涉理论分析各级传动与齿轮系统的疲劳可靠性。将可靠度作为优化目标,以齿数、模数、齿宽、压力角及变位系数为优化变量,考虑基本结构、强度和质量约束条件,运用遗传算法获得高可靠轻量化的结构参数。研究表明,优化后的齿轮传动可靠度提高3.83%,质量减轻2.4%,为飞行汽车传动系统开发提供支撑。

    Abstract:

    The flying car is one of the new vehicles orienting the future aerospace transportation, and its performance is partially determined by gear transmission reliability. In this paper, the test speed changer with offset compound gear (OCG) transmission on a tilting wing flying car was studied for the fatigue reliability estimation and structure optimization. Firstly, the input load spectrum of the OCG speed changer was simulated based on the mission profile. Then the fatigue reliabilities of gear stages and the gear transmission system were estimated based on the stress strength interference theory. During the optimization process, the system fatigue reliability was the objective function, while the number of gear teeth, normal module, face width, pressure angle and shift coefficient were design variables. With the constraints of basic structure, strength and weight, the genetic algorithm was utilized to obtain an optimized solution. The comparison between the optimized structure and the initial one shows that the fatigue reliability of speed changer improves by 3.83% and the mass decreases by 2.4%. This work provides a design method for the development of such systems.

    参考文献
    [1] 张扬军, 钱煜平, 诸葛伟林, 等. 飞行汽车的研究发展与关键技术[J]. 汽车安全与节能学报, 2020, 11(1): 1-16.Zhang Y J, Qian Y P, Zhuge W L, et al. Progress and key technologies of flying cars[J]. Journal of Automotive Safety and Energy, 2020, 11(1): 1-16. (in Chinese)
    [2] Al Haddad C, Chaniotakis E, Straubinger A, et al. Factors affecting the adoption and use of urban air mobility[J]. Transportation Research Part A: Policy and Practice, 2020, 132: 696-712.
    [3] Eker U, Ahmed S S, Fountas G, et al. An exploratory investigation of public perceptions towards safety and security from the future use of flying cars in the United States[J]. Analytic Methods in Accident Research, 2019, 23: 100103.
    [4] He H F, Liu H J, Zhu C C, et al. Study on the gear fatigue behavior considering the effect of residual stress based on the continuum damage approach[J]. Engineering Failure Analysis, 2019, 104: 531-544.
    [5] Liu H J, Liu H L, Zhu C C, et al. A review on micropitting studies of steel gears[J]. Coatings, 2019, 9(1): 42.
    [6] 刘怀举, 刘鹤立, 朱才朝, 等. 轮齿齿面断裂失效研究综述[J]. 北京工业大学学报, 2018, 44(7): 961-968. Liu H J, Liu H L, Zhu C C, et al. Review on gear tooth flank fracture[J]. Journal of Beijing University of Technology, 2018, 44(7): 961-968. (in Chinese)
    [7] Siddiqui N A, Deen K M, Khan M Z, et al. Investigating the failure of bevel gears in an aircraft engine[J]. Case Studies in Engineering Failure Analysis, 2013, 1(1): 24-31.
    [8] 曲震, 胡殿印, 张冰, 等. 航空发动机齿轮副动态啮合过程与齿根裂纹扩展轨迹影响因素研究[J]. 推进技术, 2019, 40(12): 2797-2805. Qu Z, Hu D Y, Zhang B, et al. Investigation on dynamic meshing process and factors influencing root crack propagation trajectory of an aero-engine gear pair[J]. Journal of Propulsion Technology, 2019, 40(12): 2797-2805. (in Chinese)
    [9] Cheng L, Chen L S, Li S L, et al. Fault analysis on bevel gear teeth surface damage of aeroengine[J]. IOP Conference Series: Materials Science and Engineering, 2017, 274: 012103.
    [10] Manda P, Rao A S, Singh S, et al. Failure analysis of cooler fan drive gear system of main gear box of helicopter[J]. Materials Today: Proceedings, 2018, 5(9): 17737-17745.
    [11] Chang Q C, Xue C J. Reliability analysis and experimental verification of landing-gear steering mechanism considering environmental temperature[J]. Journal of Aircraft, 2017, 55(3): 1154-1164.
    [12] Sato K, Goi T, Taguchi T, et al. Design, analysis, and tests of differential planetary gear system for open rotor power gearbox (final report)[C/OL]//Proceedings of ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, August 2-5, 2015, Boston, Massachusetts, USA. The American Society of Mechanical Engineering, 2016 [2020-09-29]. https://doi.org/10.1115/DETC2015-46414.
    [13] Robuck M, Wilkerson J, Snyder C A, et al. Study and sub-system optimization of propulsion and drive systems for the large civil tiltrotor (LCTR2) rotorcraft[C/OL]//AHS 2013: Proceedings of the Future Vertical Lift Aircraft Design Conference. San Francisco, USA: American Helicopter Society, 2013 [2020-09-29]. https://ntrs.nasa.gov/citations/20140005755.
    [14] Stevens M A, Lewicki D G, Handschuh R F. Concepts for multi-speed rotorcraft drive system-status of design and testing at NASA GRC[C/OL]//AHS 2015: Proceedings of the International 71th Annual Forum & Technology Display. Virginia Beach, USA: American Helicopter Society, 2015 [2020-09-29]. https://ntrs.nasa.gov/citations/20150010716.
    [15] Krantz T, Handschuh R, Roberts G. Results of NASA technical challenge to demonstrate two-speed drive for vertical lift vehicle[C/OL]//AHS 2018: Proceedings of the International 74th Annual Forum & Technology Display. Phoenix, USA: American Helicopter Society, 2018 [2020-09-29]. https://ntrs.nasa.gov/citations/20180003086.
    [16] Robuck M, Wilkerson J, Maciolek R, et al. The effect of rotor cruise tip speed, engine technology and engine/drive system RPM on the NASA large civil tiltrotor (LCTR2) size and performance: ARC-E-DAA-TN7289 [R]. Hanover, New Hampshire, USA: NASA Center for Aerospace Information (CASI), 2012.
    [17] 辜运燕. 我国西部干线飞机颠簸分布规律分析[D]. 广汉: 中国民用航空飞行学院, 2009. Gu Y Y. Airplane turbulence distribution analysis of western trunk air routes in China[D]. Guanghan: Civil Aviation Flight University of China, 2009. (in Chinese)
    [18] 成大先. 机械设计手册: 6版3卷[M]. 北京: 化学工业出版社, 2010. Cheng D X. Mechanical Design Manual: vol 3, 6th ed. [M]. Beijing: Chemical Industry Press, 2010. (in Chinese)
    [19] Jia P, Liu H J, Zhu C C, et al. Contact fatigue life prediction of a bevel gear under spectrum loading[J]. Frontiers of Mechanical Engineering, 2020, 15(1): 123-132.
    [20] 平安, 王德俊, 徐灏. 关于确定小载荷取舍标准的研究[J]. 农业机械学报, 1993, 24(3): 64-69. Ping A, Wang D J, Xu H. Study on determining criterion for omission of small loads[J]. Transactions of the Chinese Society of Agricultural Machinery, 1993, 24(3): 64-69. (in Chinese)
    [21] Wei J, Pan Z, Lin X, et al. Copula-function-based analysis model and dynamic reliability of a gear transmission system considering failure correlations[J]. Fatigue & Fracture of Engineering Materials & Structures, 2019, 42(1): 114-128.
    [22] 安宗文, 辛玉. 基于重要抽样法的风电齿轮箱齿轮可靠性灵敏度分析[J]. 兰州理工大学学报, 2015, 41(3): 36-40. An Z W, Xin Y. Sensitivity analysis of reliability of gear in wind turbine gear-box based on important sampling method[J]. Journal of Lanzhou University of Technology, 2015, 41(3): 36-40. (in Chinese)
    [23] 朱才朝, 徐向阳, 陆波, 等. 大功率船用齿轮箱传动系统模糊可靠性优化[J]. 船舶力学, 2010, 14(8): 915-921. Zhu C C, Xu X Y, Lu B, et al. Fuzzy reliability optimization for transmission system of high-power marine gearbox[J]. Journal of Ship Mechanics, 2010, 14(8): 915-921.(in Chinese)
    [24] 殷久诚. 航空发动机主轴轴承的可靠性评估[D]. 西安: 西安工业大学, 2015.Yin J C. Reliability assessment of aero-engine spindle bearings[D]. Xi'an: Xi'an Technological University, 2015. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘根伸,刘怀举,朱才朝,毛天雨,高云松.飞行汽车变速器齿轮传动可靠性优化设计[J].重庆大学学报,2022,45(4):1-11.

复制
相关视频

分享
文章指标
  • 点击次数:687
  • 下载次数: 1125
  • HTML阅读次数: 1564
  • 引用次数: 0
历史
  • 收稿日期:2020-10-14
  • 在线发布日期: 2022-04-18
文章二维码