微齿轮齿面磨损行为及仿真分析
作者:
中图分类号:

TH132.413

基金项目:

国家重点研发计划资助项目(2020YFB2008200);留学人员回国创业创新支持计划(cx2019163)。


Wear behavior and simulation analysis of micro gear tooth surface
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    微型齿轮作为微机电系统(MEMS)的关键零部件,齿面磨损是影响其服役性能及失效形式的主要因素之一。为了研究微齿轮齿面磨损机理,基于Archard磨损理论,利用ABAQUS二次开发UMESHMOTION子程序,结合ALE自适应网格技术,建立了微齿轮齿面磨损有限元分析模型,得到了不同啮合周期下的齿面磨损分布规律,并进行了试验验证。基于构建的有限元模型,考虑主、从齿面磨损的相互作用,分析了不同材料性能(弹性模量)及材料配对方式对齿面磨损分布及大小的影响。研究结果表明,微齿轮齿面磨损最严重的地方发生在靠近齿根的基圆附近,齿顶附近磨损较轻;与材料性能相比,不同材料配对对微齿轮磨损大小影响更显著。

    Abstract:

    Micro gear is the key element of micro-electro-mechanical system(MEMS). The tooth surface wear is one of the main factors affecting its service performance and failure mode. In order to study the wear mechanisms of micro gear, the UMESHMOTION subroutine in ABAQUS is developed based on the Archard wear theory, and a finite element analysis model of the wear in micro gear is established combining with ALE adaptive mesh technology. Then, the tooth surface wear distribution under different meshing periods is obtained and verified. Based on the constructed finite element model, considering the interaction of the master and slave tooth surface wear, the influence of different material properties (modulus of elasticity) and material pairing on the tooth surface wear distribution are analyzed. The results show that the most serious wear of the micro gear tooth surface occurs at the base circle near the tooth root, and the wear near the tooth tip is lighter; compared with the material properties, different material pairing has a more significant effect on the wear of the micro gear.

    参考文献
    [1] 彭云峰.微齿轮副的粘附接触及其力学分析[D].哈尔滨:哈尔滨工业大学, 2006. Peng Y F. Analysis of the adhesive contact of micro-gear pair[D]. Harbin:Harbin Institute of Technology, 2006.(in Chinese)
    [2] Chaubey S K, Jain N K. State-of-art review of past research on manufacturing of meso and micro cylindrical gears[J]. Precision Engineering, 2018, 51:702-728.
    [3] Chinn D, Ostendorp P, Haugh M, et al. Three dimensional imaging of LIGA-made microcomponents[J]. Journal of Manufacturing Science and Engineering, 2004, 126(4):813-821.
    [4] Wang Y K, Chen X, Wang Z L, et al. Fabrication of micro gear with intact tooth profile by micro wire electrical discharge machining[J]. Journal of Materials Processing Technology, 2018, 252:137-147.
    [5] Loh N H, Tor S B, Tay B Y, et al. Fabrication of micro gear by micro powder injection molding[J]. Microsystem Technologies, 2008, 14(1):43-50.
    [6] Youn S W, Takahashi M, Goto H, et al. Fabrication of micro-mold for glass embossing using focused ion beam, femto-second laser, eximer laser and dicing techniques[J]. Journal of Materials Processing Technology, 2007, 187/188:326-330.
    [7] Luo W S, Wang C Y, Wang J, et al. The development of micro abrasive waterjet machining technology[J]. Advanced Materials Research, 2011, 188:733-738.
    [8] Ali M Y, Mustafizul Karim A N, Adesta E Y T, et al. Comparative study of conventional and micro WEDM based on machining of meso/micro sized spur gear[J]. International Journal of Precision Engineering and Manufacturing, 2010, 11(5):779-784.
    [9] Wang Z L, Shen X J, Chen X Y. Mechanical characteristic analysis of micro gear mechanism[J]. Integrated Ferroelectrics, 2015, 161(1):112-122.
    [10] Zhang D Y, Liu S G, Liu B L, et al. Investigation on bending fatigue failure of a micro-gear through finite element analysis[J]. Engineering Failure Analysis, 2013, 31:225-235.
    [11] Niza M E, Komori M, Nomura T, et al. Test rig for micro gear and experimental analysis on the meshing condition and failure characteristics of steel micro involute gear and metallic glass one[J]. Mechanism and Machine Theory, 2010, 45(12):1797-1812.
    [12] Ishida M, Takeda H, Nishiyama N, et al. Wear resistivity of super-precision microgear made of Ni-based metallic glass[J]. Materials Science and Engineering:A, 2007, 449/450/451:149-154.
    [13] 鈴木朋也,高橋美喜男,板垣貴喜, など.微小平歯車の負荷特性に及ぼす潤滑油の影響[C]//2016年度年次大会論文集.日本機械学会, 2016:S1140105. Suzuki T, Takahashi M, Itagaki T, etc. Effect of lubricating oil on the load characteristics of micro spur gears[C]//2016 Annual Conference Proceeding. The Japan Society of Mechanical Engineers, 2016:S1140105.(in Japanese)
    [14] 田嶋洋人,鈴木朋也,高橋美喜男, など.微小歯車の負荷特性に関する研究(りん青銅の場合)[C]//2017年度精密工学会春季大会.日本精密工学会, 2017:947-948. Tajima H, Suzuki T, Takahashi M, et al. Study on load characteristics of micro gears (in the case of phosphor bronze)[C]//[JP]2017 Annual Conference of the Japan Society for Precision Engineering. The Japan Society for Precision Engineering, 2017:947-948.(in Japanese)
    [15] 田嶋洋人,高橋美喜男,板垣貴喜, など.微小平歯車の負荷特性に関する研究:回転速度および潤滑油性状の影響[C][JP]//2018年度年次大会論文集.日本機械学会, 2018:S1120303. Tajima H, Takahashi M, Itagaki T, et al. Study on load characteristics of micro spur gears:effects of rotational speed and lubricating oil properties[C]//2018 Annual Conference Proceeding. The Japan Society of Mechanical Engineers, 2018:S1120303.(in Japanese)
    [16] Hegadekatte V, Hilgert J, Kraft O, et al. Multi time scale simulations for wear prediction in micro-gears[J]. Wear, 2010, 268(1/2):316-324.
    [17] 石万凯,王旭,韩振华,等.渐开线微齿轮磨损仿真分析[J].机械传动, 2016, 40(4):10-14. Shi W K, Wang X, Han Z H, et al. Simulation of wear in involute micro gear[J]. Journal of Mechanical Transmission, 2016, 40(4):10-14.(in Chinese)
    [18] 王旭.微齿轮粗糙齿面磨损分析及齿廓优化设计[D].重庆:重庆大学, 2016. Wang X. Wear analysis and tooth profile optimization of micro gears with rough tooth surfaces[D]. Chongqing:Chongqing University, 2016.(in Chinese)
    [19] Archard J F. Contact and rubbing of flat surfaces[J]. Journal of Applied Physics, 1953, 24(8):981-988.
    [20] 张俊,卞世元,鲁庆,等.准静态工况下渐开线直齿轮齿面磨损建模与分析[J].机械工程学报, 2017, 53(5):136-145. Zhang J, Bian S Y, Lu Q, et al. Quasi-static-model-based wear analysis of spur gears[J]. Journal of Mechanical Engineering, 2017, 53(5):136-145.(in Chinese)
    [21] Flodin A, Andersson S. Simulation of mild wear in spur gears[J]. Wear, 1997, 207(1/2):16-23.
    [22] Brauer J, Andersson S. Simulation of wear in gears with flank interference - a mixed FE and analytical approach[J]. Wear, 2003, 254(11):1216-1232.
    [23] Demiri S, Boedo S, Holsen L S. Wear characteristics of large aspect ratio silicon microbearing systems[J]. Wear, 2014, 312(1/2):58-69.
    [24] Williams J A. Friction and wear of rotating pivots in MEMS and other small scale devices[J]. Wear, 2001, 251(1/2/3/4/5/6/7/8/9/10/11/12):965-972.
    [25] Bose K K, Penchaliah R. 3-D FEM wear prediction of brass sliding against bearing steel using constant contact pressure approximation technique[J]. Tribology Online, 2019, 14(4):194-207.
    [26] 肖博升. PEEK及CF/PEEK摩擦磨损性能研究[D].大连:大连理工大学, 2018. Xiao B S. Study on friction and wear properties of PEEK and CF/PEEK[D]. Dalian:Dalian University of Technology, 2018.(in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

魏东,魏沛堂,刘怀举,朱才朝.微齿轮齿面磨损行为及仿真分析[J].重庆大学学报,2022,45(4):22-30.

复制
分享
文章指标
  • 点击次数:667
  • 下载次数: 1608
  • HTML阅读次数: 2164
  • 引用次数: 0
历史
  • 收稿日期:2020-08-12
  • 在线发布日期: 2022-04-18
文章二维码