模型预测控制器权重参数整定非线性规划法
作者:
中图分类号:

TQ021.8

基金项目:

国家自然科学基金项目(21776025)。


Nonlinear programming method for tuning weight parameters of model predictive controller
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    模型预测控制(MPC)权重参数的整定是其取得良好控制性能的关键。针对基于双层结构多目标优化的MPC权重参数整定方法存在求解过程较慢、耗时较长的问题,提出了一种非线性规划整定方法。该方法将MPC权重参数整定中每个时间采样点的MPC子优化问题等价为外层MPC权重参数整定优化问题的最优KKT(Karush-Kuhn-Tucker)条件,将MPC权重参数整定的双层多目标优化问题转化为单层非线性规划问题。仿真案例表明,基于单层非线性规划整定方法的MPC控制性能优于或近似于基于双层多目标优化整定方法的MPC控制性能;而且基于单层非线性规划的整定方法能够快速获得MPC权重参数,时间成本由基于多目标优化整定方法所需的1.0~1.5 h缩短到10~90 s。

    Abstract:

    The tuning of the weight parameters on the input and output variables can significantly affect the performance of a model predictive controller (MPC) to achieve a good closed-loop dynamic response. However, the currently available approaches based on the bi-layer multi-objective optimization (MOO) for tuning MPC weight parameters are computation-consuming. In this study, a new tuning algorithm is proposed, which converts the bi-layer MOO-based approach into a single-layer nonlinear programming (NLP) problem by treating the sub-optimization problem of MPC in the lower layer as the optimal KKT (Karush-Kuhn-Tucker) condition of the optimization in the upper layer, so as to reduce the computational cost. The simulation results demonstrate that the MPC tuned by NLP method shows similar or even better performance than the MPC tuned by MOO-based method. Moreover, by using the NLP tuning method, the computational time of the MPC tuning can be significantly reduced from a range of 1.0 h to 1.5 h for the MOO-based tuning method to a range of 5 s to 90 s.

    参考文献
    [1] Qin S J, Badgwell T A. A survey of industrial model predictive control technology[J]. Control Engineering Practice, 2003, 11(7):733-764.
    [2] 罗雄麟,于洋,许鋆.化工过程预测控制的在线优化实现机制[J].化工学报, 2014, 65(10):3984-3992. Luo X L, Yu Y, Xu J. Online optimization implementation on model predictive control in chemical process[J]. CIESC Journal, 2014, 65(10):3984-3992.(in Chinese)
    [3] Garriga J L, Soroush M. Model predictive control tuning methods:a review[J]. Industrial & Engineering Chemistry Research, 2010, 49(8):3505-3515.
    [4] Trierweiler J O, Farina L A. RPN tuning strategy for model predictive control[J]. Journal of Process Control, 2003, 13(7):591-598.
    [5] Hinde R F Jr, Cooper D J Jr. A pattern-based approach to excitation diagnostics for adaptive process control[J]. Chemical Engineering Science, 1994, 49(9):1403-1415.
    [6] Shridhar R, Cooper D J. A tuning strategy for unconstrained SISO model predictive control[J]. Industrial & Engineering Chemistry Research, 1997, 36(3):729-746.
    [7] Shridhar R, Cooper D J. A tuning strategy for unconstrained multivariable model predictive control[J]. Industrial & Engineering Chemistry Research, 1998, 37(10):4003-4016.
    [8] Gous G Z, de Vaal P L. Using MV overshoot as a tuning metric in choosing DMC move suppression values[J]. ISA Transactions, 2012, 51(5):657-664.
    [9] Davtyan A, Hoffmann S, Scheuring R. Optimization of model predictive control by means of sequential parameter optimization[C]//Computational Intelligence in Control and Automation (CICA), April 11-15, 2011, Paris, France. IEEE, 2011:11-16.
    [10] Exadaktylos V, Taylor C J. Multi-objective performance optimisation for model predictive control by goal attainment[J]. International Journal of Control, 2010, 83(7):1374-1386.
    [11] Nery G A Jr, Martins M A F, Kalid R. A PSO-based optimal tuning strategy for constrained multivariable predictive controllers with model uncertainty[J]. ISA Transactions, 2014, 53(2):560-567.
    [12] Yamashita A S, Alexandre P M, Zanin A C, et al. Reference trajectory tuning of model predictive control[J]. Control Engineering Practice, 2016, 50:1-11.
    [13] Yamashita A S, Zanin A C, Odloak D. Tuning the model predictive control of a crude distillation unit[J]. ISA Transactions, 2016, 60:178-190.
    [14] Giraldo S A C, Melo P A, Secchi A R. Tuning of model predictive control based on hybrid optimization[J]. IFAC-PapersOnLine, 2019, 52(1):136-141.
    [15] Gutiérrez-Urquídez R C, Valencia-Palomo G, Rodríguez-Elias O M, et al. Systematic selection of tuning parameters for efficient predictive controllers using a multiobjective evolutionary algorithm[J]. Applied Soft Computing, 2015, 31:326-338.
    [16] Lozano Santamaría F, Gómez J M. An algorithm for tuning NMPC controllers with application to chemical processes[J]. Industrial&Engineering Chemistry Research, 2016, 55(34):9215-9228.
    [17] Vallerio M, van Impe J, Logist F. Tuning of NMPC controllers via multi-objective optimisation[J]. Computers&Chemical Engineering, 2014, 61:38-50.
    [18] Tran Q N, Özkan L, Backx A C P M. Generalized predictive control tuning by controller matching[J]. Journal of Process Control, 2015, 25:1-18.
    [19] Feng Z M, Shen W F, Rangaiah G P, et al. Proportional-integral control and model predictive control of extractive dividing-wall column based on temperature differences[J]. Industrial&Engineering Chemistry Research, 2018, 57(31):10572-10590.
    [20] Feng Z M, Shen W F, Rangaiah G P, et al. Closed-loop identification and model predictive control of extractive dividing-wall column. Chemical Engineering and Processing -Process Intensification, 2019, 142: 107552.
    [21] Sharma S, Rangaiah G P, Cheah K S. Multi-objective optimization using MS Excel with an application to design of a falling-film evaporator system. Food and Bioproducts Processing, 2012, 90(2): 123-134.
    [22] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
    [23] Wong J Y Q, Sharma S, Rangaiah G P. Design of shell-and-tube heat exchangers for multiple objectives using elitist non-dominated sorting genetic algorithm with termination criteria. Applied Thermal Engineering, 2016, 93: 888-899.
    [24] Oni A O, Fadare D A, Sharma S, et al. Multi-objective optimisation of a double contact double absorption sulphuric acid plant for cleaner operation. Journal of Cleaner Production, 2018, 181: 652-662.
    [25] da Cunha S, Rangaiah G P, Hidajat K. Design, optimization, and retrofit of the formic acid process I: base case design and dividing-wall column retrofit. Industrial & Engineering Chemistry Research, 2018, 57(29): 9554-9570.
    [26] da Cunha S, Rangaiah G P, Hidajat K. Design, optimization, and retrofit of the formic acid process II: reactive distillation and reactive dividing-wall column retrofits. Industrial & Engineering Chemistry Research, 2018, 57(43): 14665-14679.
    [27] Wang Z Y, Rangaiah G P. Application and analysis of methods for selecting an optimal solution from the Pareto-optimal front obtained by multiobjective optimization. Industrial & Engineering Chemistry Research, 2017, 56(2): 560-574.
    [28] Alanqar A, Durand H, Christofides P D. On identification of well-conditioned nonlinear systems: application to economic model predictive control of nonlinear processes. AIChE Journal, 2015, 61(10): 3353-3373.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

冯泽民,李乔,谭陆西,董立春.模型预测控制器权重参数整定非线性规划法[J].重庆大学学报,2022,45(4):111-121,154.

复制
分享
文章指标
  • 点击次数:717
  • 下载次数: 1663
  • HTML阅读次数: 1231
  • 引用次数: 0
历史
  • 收稿日期:2020-01-05
  • 在线发布日期: 2022-04-18
文章二维码