不同形态藻类的混凝效果及絮体特性
作者:
中图分类号:

TU991.2

基金项目:

国家自然科学基金(51778082);国家自然科学基金青年科学基金(51108481)。


The coagulation effect and floc characteristics of different forms of algae
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    采用氯化铁和硫酸铝作为混凝剂,分别研究了不同形态结构的铜绿微囊藻、针杆藻和水华鱼腥藻的混凝效果及絮体特性。结果表明:在铁盐、铝盐混凝剂不同投加量下,铁盐对3种藻的混凝去除效果优于铝盐;3种藻在铁盐和铝盐各自达到最佳混凝效果时的混凝剂投加量:铁盐>铝盐。铜绿微囊藻的整体混凝效果最差,针杆藻的最好。相比于铝盐,3种藻在采用铁盐混凝时形成絮体的分形维数值更大;针杆藻絮体的整体分形维数最大(最大值:1.72),铜绿微囊藻的最小(最大值:1.17),表明藻种形态对混凝絮体结构的影响。3种藻在采用铁盐混凝时的絮体粒径(d50)均大于铝盐絮体,絮体强度和恢复因子小于铝盐絮体的对应值。当采用铁盐混凝剂时,铜绿微囊藻絮体d50的最大值(632 μm)小于针杆藻(765 μm)和水华鱼腥藻(777 μm);针杆藻絮体的恢复因子最大(26.54%),水华鱼腥藻的恢复因子最小(11.04%)。3种藻絮体到达等电点的铁盐投加量大于铝盐投加量,藻絮体Zeta电位可用于分析藻类混凝时最佳去除率对应的投加量。铜绿微囊藻以电性中和混凝机制为主,吸附架桥和网捕卷扫机制则可能对水华鱼腥藻和针杆藻的絮凝作用更重要。

    Abstract:

    The coagulation effect and floc characteristics of M. aeruginosa, Synedra and Anabaena were studied, separately, by using ferric chloride and aluminum sulfate coagulants. The results show that the ferric salt has better coagulation and removal effect on the three algae species than aluminum salt does, and the three algae species achieves best coagulation effect when the ratio of coagulant is ferric salt coagulant > aluminum salt coagulant. The M. aeruginosa has the worst coagulation effect, and Synedra has the best under different dosages of ferric and aluminum salts. Compared with the use of aluminum salt, the three algae flocs coagulated by iron salt have larger fractal dimension. The fractal dimension value of Synedra is the largest(the maximum value:1.72) and that of M. aeruginosa is the smallest(the maximum value:1.17), indicating the effect of algae morphology on the flocs structure. The particle size(d50) of the flocs of the three algae species when coagulated with ferric salt is larger than that of the flocs using aluminum salt, and the strength and recovery factor of the ferric salt flocs are smaller than those of the aluminum salt flocs. The maximum value of d50 of M. aeruginosa floc (632 μm) is smaller than that of Synedra floc (765 μm) and Anabaena floc (777 μm) when using ferric salt. Synedra has the largest recovery factor of 26.54%, and Anabaena has the smallest recovery factor of 11.04% when using ferric salt. When the three algal flocs reach the isoelectric point, the dosage of ferric salt is greater than that of aluminum salt. The zeta potential of algal floc can be used to analyze the dosage corresponding to the optimal removal rate of algae coagulation. The M. aeruginosa flocculation is mainly electroneutralized, while the adsorption bridge and netting may play a more important role in the flocculation of Anabaena and Synedra.

    参考文献
    [1] 黄亚男, 纪道斌, 龙良红, 等. 三峡库区典型支流春季特征及其水华优势种差异分析[J]. 长江流域资源与环境, 2017, 26(3):461-470.Huang Y N, Ji D B, Long L H, et al. The variance analysis of characteristics and blooms of the typical tributaries of the Three Gorges reservoir in spring[J]. Resources and Environment in the Yangtze Basin, 2017, 26(3):461-470.(in Chinese)
    [2] Li W, Qin B Q. Dynamics of spatiotemporal heterogeneity of cyanobacterial blooms in large eutrophic Lake Taihu, China[J]. Hydrobiologia, 2019, 833(1):81-93.
    [3] 任加国, 贾海斌, 焦立新, 等. 滇池大气沉降氮磷形态特征及其入湖负荷贡献[J]. 环境科学, 2019, 40(2):582-589. Ren J G, Jia H B, Jiao L X, et al. Characteristics of nitrogen and phosphorus formation in atmospheric deposition in Dianchi Lake and their contributions to lake loading[J]. Environmental Science, 2019, 40(2):582-589.(in Chinese)
    [4] 崔福义, 马华. 水源水中藻的危害与饮用水除藻技术[J]. 给水排水, 2011, 37(6):1, 103. Chui F Y, Ma H. The harm of algae in water source and the technology of algae removal in drinking water[J]. Water & Wastewater Engineering, 2011, 37(6):1, 103. (in Chinese)
    [5] Wang H, Park M, Liang H, et al. Reducing ultrafiltration membrane fouling during potable water reuse using pre-ozonation[J]. Water Research, 2017, 125:42-51.
    [6] Goslan E H, Seigle C, Purcell D, et al. Carbonaceous and nitrogenous disinfection by-product formation from algal organic matter[J]. Chemosphere, 2017, 170:1-9.
    [7] Gonzalez-Torres A, Putnam J, Jefferson B, et al. Examination of the physical properties of Microcystis aeruginosa flocs produced on coagulation with metal salts[J]. Water Research, 2014, 60:197-209.
    [8] Nan J, Wang Z B, Yao M, et al. Characterization of re-grown floc size and structure:effect of mixing conditions during floc growth, breakage and re-growth process[J]. Environmental Science and Pollution Research, 2016, 23(23):23750-23757.
    [9] Xu J, Zhao Y X, Gao B Y, et al. Enhanced algae removal by Ti-based coagulant:comparison with conventional Al-and Fe-based coagulants[J]. Environmental Science and Pollution Research, 2018, 25(13):13147-13158.
    [10] Lv L, Zhang X D, Qiao J L. Flocculation of low algae concentration water using polydiallyldimethylammonium chloride coupled with polysilicate aluminum ferrite[J]. Environmental Technology, 2018, 39(1):83-90.
    [11] Chen Y Q, Xie P C, Wang Z P, et al. UV/persulfate preoxidation to improve coagulation efficiency of Microcystis aeruginosa[J]. Journal of Hazardous Materials, 2017, 322:508-515.
    [12] Chekli L, Eripret C, Park S H, et al. Coagulation performance and floc characteristics of polytitanium tetrachloride (PTC) compared with titanium tetrachloride (TiCl4) and ferric chloride (FeCl3) in algal turbid water[J]. Separation and Purification Technology, 2017, 175:99-106.
    [13] Wang N, Li X, Yang Y L, et al. Combined process of visible light irradiation photocatalysis-coagulation enhances natural organic matter removal:Optimization of influencing factors and mechanism[J]. Chemical Engineering Journal, 2019, 374:748-759.
    [14] Saxena K, Brighu U, Choudhary A. Coagulation of humic acid and kaolin at alkaline pH:complex mechanisms and effect of fluctuating organics and turbidity[J]. Journal of Water Process Engineering, 2019, 31:100875.
    [15] Clasen J, Mischke U, Drikas M, et al. An improved method for detecting electrophoretic mobility of algae during the destabilisation process of flocculation:flocculant demand of different species and the impact of DOC[J]. Journal of Water Supply:Research and Technology-Aqua, 2000, 49(2):89-101.
    [16] Reynolds C S. Growth, gas vacuolation and buoyancy in a natural population of a planktonic blue-green alga[J]. Freshwater Biology, 1972, 2(2):87-106.
    [17] Lama S, Muylaert K, Karki T B, et al. Flocculation properties of several microalgae and a cyanobacterium species during ferric chloride, chitosan and alkaline flocculation[J]. Bioresource Technology, 2016, 220:464-470.
    [18] Gonzalez-Torres A, Pivokonsky M, Henderson R K. The impact of cell morphology and algal organic matter on algal floc properties[J]. Water Research, 2019, 163:114887.
    [19] 张亚晴. 掺硼金刚石薄膜电极电化学抑制和去除藻类的效果及机理研究[D]. 重庆:重庆大学, 2017. Zhang Y Q. Study on the effect and mechanism of the inhibition and removal of algae by electrochemical oxidation using boron-doped diamond electrode[D]. Chongqing:Chongqing University, 2017. (in Chinese)
    [20] 陈威. 絮凝搅拌能耗分布优化模式及其实验验证[D]. 武汉:华中科技大学, 2011. Chen W. Optimal model of stir energy distribution for flocculation and its experimental verification[D]. Wuhan:Huazhong University of Science and Technology, 2011. (in Chinese)
    [21] Wang Y, Gao B Y, Xu X M, et al. Characterization of floc size, strength and structure in various aluminum coagulants treatment[J]. Journal of Colloid and Interface Science, 2009, 332(2):354-359.
    [22] Li T, Zhu Z, Wang D S, et al. The strength and fractal dimension characteristics of alum-kaolin flocs[J]. International Journal of Mineral Processing, 2007, 82(1):23-29.
    [23] 俞文正. 混凝絮体破碎再絮凝机理研究及对超滤膜污染的影响[D]. 哈尔滨:哈尔滨工业大学, 2010. Yu W Z. Study on flocbreakage and re-growth and its effect on ultrafiltration membrane fouling[D]. Harbin:Harbin Institute of Technology, 2010. (in Chinese)
    [24] 李圭白, 张杰. 水质工程学.上册[M]. 北京:中国建筑工业出版社, 2013. Li G B, Zhang J. Water quality engineering. Volume 1[M]. Beijing:China Architecture & Building Press, 2013. (in Chinese)
    [25] Jarvis P, Banks J, Molinder R, et al. Processes for enhanced NOM removal:beyond Fe and Al coagulation[J]. Water Supply, 2008, 8(6):709-716.
    [26] Vandamme D, Foubert I, Fraeye I, et al. Influence of organic matter generated by Chlorella vulgaris on five different modes of flocculation[J]. Bioresource Technology, 2012, 124:508-511.
    [27] Jiang Q, Logan B E. Fractal dimensions of aggregates determined from steady-state size distributions[J]. Environmental Science & Technology, 1991, 25(12):2031-2038.
    [28] 李冬梅, 梅胜, 谭万春, 等. 黄河泥沙架桥絮凝体分形结构的动态演变研究[J]. 给水排水, 2004, 30(11):1-5. Li D M, Mei S, Tan W C, et al. Study on dynamic evolution of fractal structure of bridging flocculated sand aggregates in Yellow River[J]. Water & Wastewater Engineering, 2004, 30(11):1-5.(in Chinese)
    [29] 梁娟, 杨青, 丁然, 等. 混凝剂投加量对水质及絮体尺寸变化特性的影响[J]. 给水排水, 2012, 38(S1):5-9. Liang J, Yang Q, Ding R, et al. The relationship between coagulant dose and water quality and floc size characteristics[J].[JP]Water & Wastewater Engineering, 2012, 38(S1):5-9.(in Chinese)
    [30] 蒋绍阶, 蒋晖, 向平, 等. 强化混凝去除尖针杆藻[J]. 环境工程学报, 2013, 7(09):3312-3318. Jiang S J, Jiang H, Xiang P, et al. Reinforced coagulation to remove needle needle algae[J]. Chinese Journal of Environmental Engineering, 2013, 7(9):3312-3318. (in Chinese)
    [31] Sharp E L, Jarvis P, Parsons S A, et al. Impact of fractional character on the coagulation of NOM[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2006, 286(1/2/3):104-111.
    [32] Zhao Y X, Wang Y, Gao B Y, et al. Coagulation performance evaluation of sodium alginate used as coagulant aid with aluminum sulfate, iron chloride and titanium tetrachloride[J]. Desalination, 2012, 299:79-88.
    [33] Wang B, Shui Y Y, He M, et al. Comparison of flocs characteristics using before and after composite coagulants under different coagulation mechanisms[J]. Biochemical Engineering Journal, 2017, 121:107-117.
    [34] Jiang J Q, Graham N. Removal of algae and air halomethane (THM) precursors by coagulation[J]. Water Treatment, 1992, 7:155-168.
    [35] Ordaz-Diaz L A, Valle-Cervantes S, Rodriguez-Rosales J, et al. Zeta potential as a tool to evaluate the optimum performance of a coagulation-flocculation process for wastewater internal treatment for recirculation in the pulp and paper process[J]. Bioresources, 2017, 12(3):5953-5969.
    [35] Ordaz-Díaz L A, Valle-Cervantes S, Rodríguez-Rosales J, et al. Zeta potential as a tool to evaluate the optimum performance of a coagulation-flocculation process for wastewater internal treatment for recirculation in the pulp and paper process[J]. BioResources, 2017, 12(3):5953-5969.
    [36] 邬艳, 杨艳玲, 李星, 等. 三种常见混凝机理为主导条件下絮体特性研究[J]. 中国环境科学, 2014, 34(1):150-155. Wu Y, Yang Y L, Li X, et al. Study on flocs characteristics under three common dominant coagulation mechanisms[J]. China Environmental Science, 2014, 34(1):150-155.(in Chinese)
    引证文献
引用本文

姚娟娟,龚丹,方艳娟,张智.不同形态藻类的混凝效果及絮体特性[J].重庆大学学报,2022,45(4):134-142.

复制
相关视频

分享
文章指标
  • 点击次数:629
  • 下载次数: 1567
  • HTML阅读次数: 1964
  • 引用次数: 0
历史
  • 收稿日期:2020-04-27
  • 在线发布日期: 2022-04-18
文章二维码