多尺度仿生超疏水结构的制备与性能表征
作者:
作者单位:

1.西南科技大学 制造过程测试技术教育部重点实验室,四川 绵阳 621010;2.河北工业大学 机械工程学院, 天津 300401;3.重庆大学 航空航天学院,重庆 400044

作者简介:

向露(1998—),女,硕士研究生,主要从事多尺度仿生超疏水结构的制备研究,(E-mail) 1320604415@qq.com。

通讯作者:

袁卫锋,男,教授,博士生导师,(E-mail)yuanweifeng@swust.edu.cn。

中图分类号:

TH145.9

基金项目:

国家自然科学基金资助项目(12072300)。


Fabrication and performance characterization of the multiscaled bionic superhydrophobic structure
Author:
Affiliation:

1.Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P. R. China;2.School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China;3.College of Aerospace Engineering, Chongqing University, Chongqing 400044, P. R. China

Fund Project:

Supported by National Natural Science Foundation of China (12072300).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    受冰岛野罂粟花苞绒毛的疏水特性启发,采用3D打印与化学修饰相结合的方法,制备了一种多尺度的超疏水结构,并利用扫描电子显微镜和微力测量仪分别对其进行了微观形貌和疏水性能表征。该结构在宏观尺度下呈现为物体表面上按照阵列分布的仿生柱杆,而柱杆表面黏附有碳纳米管团簇形成的微观尺度鳞片。因多尺度协同增强效应,被该结构覆盖的表面具有优异的超疏水性能,斥水力可达50.68 N/m2。与现有的表面疏水涂层等微观疏水结构的制备工艺相比,提出的方法经济、简单,多尺度结构抗破坏能力强,疏水功能稳定,便于工业化生产,可应用于液滴定向运移、流体减阻和水下气体交换等多个领域。

    Abstract:

    Inspired by the hydrophobic properties of the fluffs of Papaver nudicaule Linn, a multiscaled superhydrophobic structure was fabricated through a combination of 3D printing and chemical modification. The prepared structure was characterized at both micromorphological and hydrophobic levels by using scanning electron microscope and microforce instrumentation. At the macroscopic scale, the structure consists of biomimetic pillars arranged in an array on the surface, with carbon nanotube clusters adhering to the pillars to form microscopic scales. The multiscaled synergistic enhancement effect of this structure results in excellent superhydrophobicity, with a water repellency force reaching 50.68 N/m2. Compared to hydrophobic coatings and other existing methods for preparing microscopic hydrophobic structures, the proposed method is economical and straightforward. The multiscaled structure exhibits strong damage resistance and stable hydrophobicity, and is conducive to industrial production. As a result, it finds applications in various fields such as directional droplet migration, fluid drag reduction, and underwater gas exchange.

    图1 冰岛野罂粟花苞的疏水结构和性能Fig.1 Hydrophobic structure and properties of Papaver nudicaule Linn
    图2 多尺度仿生超疏水结构制备过程Fig.2 Preparation procedure for multiscaled bionic superhydrophobic structure
    图3 有机混合溶液的制备过程Fig.3 Preparation procedure for organic mixed solution
    图4 不同试件的SEM图Fig.4 SEM images of test samples
    图6 多尺度仿生超疏水结构的水滴运移能力Fig.6 Transportability of multiscaled bionic superhydrophobic structures
    图8 液滴在多尺度仿生超疏水结构表面的接触角Fig.8 Contact angle of droplet on the surface of multiscaled bionic superhydrophobic structure
    图9 微力测量仪Fig.9 Micro force measuring instrument
    图10 力与电容变化量之间的关系Fig.10 Relationship between force and capacitance change
    图11 疏水性表征Fig.11 Hydrophobic characterization
    图12 试件的受力分析Fig.12 Stress analysis of samples
    参考文献
    [1] Liu Y, Tang J, Wang R, et al. Artificial lotus leaf structures from assembling carbon nanotubes and their applications in hydrophobic textiles[J]. Journal of Materials chemistry, 2007, 17(11): 1071-1078.
    [2] Neinhuis C, Barthlott W. Characterization and distribution of water-repellent, self-cleaning plant surfaces[J]. Annals of Botany, 1997, 79(6): 667-677.
    [3] Li B C, Zhang J P. Durable and self-healing superamphiphobic coatings repellent even to hot liquids[J]. Chemical Communications, 2016, 52(13): 2744-2747.
    [4] Jeevahan J, Chandrasekaran M, Britto Joseph G, et al. Superhydrophobic surfaces: a review on fundamentals, applications, and challenges[J]. Journal of Coatings Technology and Research, 2018, 15(2): 231-250.
    [5] Liu K, Jiang L. Bio-inspired self-cleaning surfaces[J]. Annual Review of Materials Research, 2012, 42: 231-263.
    [6] Han Z W, Feng X M, Jiao Z B, et al. Bio-inspired antifogging PDMS coupled micro-pillared superhydrophobic arrays and SiO2 coatings[J]. RSC Advances, 2018, 8(47): 26497-26505.
    [7] Pan S, Wang N, Xiong D S, et al. Fabrication of superhydrophobic coating via spraying method and its applications in anti-icing and anti-corrosion[J]. Applied Surface Science, 2016, 389: 547-553.
    [8] Xiao F, Yuan S, Liang B, et al. Superhydrophobic CuO nanoneedle-covered copper surfaces for anticorrosion[J]. Journal of Materials Chemistry A, 2015, 3(8): 4374-4388.
    [9] Lv J, Gong Z J, He Z K, et al. 3D printing of a mechanically durable superhydrophobic porous membrane for oil-water separation[J]. Journal of Materials Chemistry A, 2017, 5(24): 12435-12444.
    [10] Si Y F, Dong Z C, Jiang L. Bioinspired designs of superhydrophobic and superhydrophilic materials[J]. ACS Central Science, 2018, 4(9): 1102-1112.
    [11] Liu H, Liu Z, Yang M, et al. Surperhydrophobic polyurethane foam modified by graphene oxide[J]. Journal of Applied Polymer Science, 2013, 130(5): 3530-3536.
    [12] Liu H D, Gu B, Yuan W F, et al. Fabrication of a superhydrophobic polyurethane foam and its application for continuous oil removal[J]. Materials Research Express, 2018, 5(2): 025005.
    [13] Amabili M, Giacomello A, Meloni S, et al. Unraveling the Salvinia paradox: design principles for submerged superhydrophobicity[J]. Advanced Materials Interfaces, 2015, 2(14): 1500248.
    [14] Hebets E A, Chapman RF. Surviving the flood: plastron respiration in the non-tracheate arthropod Phrynus marginemaculatus (Amblypygi: Arachnida)[J]. Journal of Insect Physiology, 2000, 46(1): 13-19.
    [15] Liu H D, Zhang H, Pang J, et al. Superhydrophobic property of epoxy resin coating modified with octadecylamine and SiO2 nanoparticles[J]. Materials Letters, 2019, 247: 204-207.
    [16] Osawa S, Yabe M, Miyamura M, et al. Preparation of super-hydrophobic surface on biodegradable polymer by transcribing microscopic pattern of water-repellent leaf[J]. Polymer, 2006, 47(11): 3711-3714.
    [17] Sharifi N, Pugh M, Moreau C, et al. Developing hydrophobic and superhydrophobic TiO2 coatings by plasma spraying[J]. Surface and Coatings Technology, 2016, 289: 29-36.
    [18] Liu Y, Song Y, Niu S, et al. Integrated super-hydrophobic and antireflective PDMS bio-templated from nano-conical structures of cicada wings[J]. RSC advances, 2016, 6(110): 108974-108980.
    [19] Huang K Y, Ning H M, Hu N, et al. Ultrasensitive MWCNT/PDMS composite strain sensor fabricated by laser ablation process[J]. Composites Science and Technology, 2020, 192: 108105.
    [20] Hu B, Liu Y, Hu N, et al. Conductive PVDF-HFP/CNT composites for strain sensing[J]. Functional Materials Letters, 2016, 9(2): 1650024.
    [21] 张豪, 林栎阳, 吴博, 等. 复合材料在柔性电化学储能装置中的应用及研究进展[J]. 河北工业大学学报, 2020, 49(3): 1-20.Zhang H, Lin L Y, Wu B, et al. Research progress on the application of composite materials in flexible electrochemical energy storage devices[J]. Journal of Hebei University of Technology, 2020, 49(3): 1-20. (in Chinese)
    [22] Li Y, Hu N, Kojima T, et al. Experimental study on mechanical properties of epoxy/MWCNT nanocomposites-effects of acid treatment, pressured curing, and liquid rubber[J]. Journal of Nanotechnology in Engineering and Medicine, 2012, 3(1): 011004.
    [23] 王静, 张佳, 张旭, 等. 纳米超疏水防护涂层对石质材料透气性能影响研究[J]. 河北工业大学学报, 2020, 49(3): 63-68.Wang J, Zhang J, Zhang X, et al. Effects of nano super-hydrophobic protective coatings on the gas permeability of rock materials[J]. Journal of Hebei University of Technology, 2020, 49(3): 63-68. (in Chinese)
    [24] 张静, 张衍, 刘育建, 等. MWCNTs改性复合超疏水涂层及其耐化学性能[J]. 材料科学与工程学报, 2020, 38(2): 250-255.Zhang J, Zhang Y, Liu Y J, et al. MWCNTs modification of superhydrophobic composite coating with high chemical resistance[J]. Journal of Materials Science and Engineering, 2020, 38(2): 250-255. (in Chinese)
    [25] Feng S L, Zhu P G, Zheng H X, et al. Three-dimensional capillary ratchet-induced liquid directional steering[J]. Science, 2021, 373(6561): 1344-1348.
    [26] Feng S L, Delannoy J, Malod A, et al. Tip-induced flipping of droplets on Janus Pillars: from local reconfiguration to global transport[J]. Science Advances, 2020, 6(28): eabb4540.
    [27] Barthlott W, Schimmel T, Wiersch S, et al. The Salvinia paradox: superhydrophobic surfaces with hydrophilic pins for air retention under water[J]. Advanced Materials, 2010, 22(21): 2325-2328.
    [28] Tricinci O, Terencio T, Mazzolai B, et al. 3D micropatterned surface inspired by Salvinia molesta via direct laser lithography[J]. ACS Applied Materials & Interfaces, 2015, 7(46): 25560-25567.
    [29] Li X, Yang Y, Liu L, et al. 3D-Printed cactus-inspired spine structures for highly efficient water collection[J]. Advanced Materials Interfaces, 2020, 7(3): 1901752.
    [30] Xiang Y L, Huang S L, Huang T Y, et al. Superrepellency of underwater hierarchical structures on Salvinia leaf[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(5): 2282-2287.
    [31] Vuckovac M, Latikka M, Liu K, et al. Uncertainties in contact angle goniometry[J]. Soft Matter, 2019, 15(35): 7089-7096.
    [32] Lin N B, Liu X Y. Correlation between hierarchical structure of crystal networks and macroscopic performance of mesoscopic soft materials and engineering principles[J]. Chemical Society Reviews, 2015, 44(21): 7881-7915.
    [33] Yang Y, Li X, Zheng X, et al. 3D-printed biomimetic super-hydrophobic structure for microdroplet manipulation and oil/water separation[J]. Advanced Materials, 2018, 30(9): 1704912.
    [34] 原子超, 詹海洋, 刘聪, 等. 浸润性表面液滴定向输运研究进展[J]. 表面技术, 2021, 50(8): 1-17.Yuan Z C, Zhan H Y, Liu C, et al. Research progress on droplet directional transport on wetting surfaces[J]. Surface Technology, 2021, 50(8): 1-17. (in Chinese)
    [35] Wen Q Y, Guo Z G. Recent advances in the fabrication of superhydrophobic surfaces[J]. Chemistry Letters, 2016, 45(10): 1134-1149.
    [36] 吕鹏宇, 薛亚辉, 段慧玲. 超疏水材料表面液—气界面的稳定性及演化规律[J]. 力学进展, 2016, 46: 179-225.Lv P Y, Xue Y H, Duan H L. Stability and evolution of liquid-gas interfaces on superhydrophobic surfaces[J]. Advances in Mechanics, 2016, 46: 179-225. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

向露,黄楷焱,宁慧铭,李宗阳,袁卫锋.多尺度仿生超疏水结构的制备与性能表征[J].重庆大学学报,2024,47(7):21-31.

复制
分享
文章指标
  • 点击次数:285
  • 下载次数: 403
  • HTML阅读次数: 124
  • 引用次数: 0
历史
  • 收稿日期:2022-05-23
  • 在线发布日期: 2024-08-15
文章二维码