Northwest Institute of Ecology and Environmental Resources, Chinese Academy of Sciences, Lanzhou 730000, P. R. China;College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China 在期刊界中查找 在百度中查找 在本站中查找
Thermal simulation experiments before and after hydrogenation of organic rich mudstone in Huanglong area of Shaanxi Province in closed system show that hydrogenation has a significant impact on the generation of saturated hydrocarbons and aromatics in source rocks, and the action stages are in the ranges of 200 ℃ to 400 ℃ and 400 ℃ to 500 ℃. At relatively low temperature, hydrogenation can inhibit the formation of saturated hydrocarbons, especially low carbon number saturated hydrocarbons; at high temperature, hydrogenation can promote the formation of low carbon number saturated hydrocarbons. The study on the product characteristics of different temperature stages of source rock evolution under different conditions is helpful to better understand the evolution process of source rock and the change of source rock after the change of external conditions, providing ideas for oil and gas exploration and fine evaluation.
[1] 卢双舫, 张敏. 油气地球化学[M]. 北京:石油工业出版社, 2008.Lu S F, Zhang M. Oil and gas geochemistry[M]. Beijing:Petroleum Industry Press, 2008.(in Chinese)
[2] Tissot B P, Welte D H. Petroleum Formation and Occurrence[M]. Berlin, Heidelberg:Springer Berlin Heidelberg, 1984.
[3] 妥进才. 深层油气研究现状及进展[J]. 地球科学进展, 2002, 17(4):565-571. Tuo J C. Research status and advances in deep oil and gas exploration[J]. Advance in Earth Sciences, 2002, 17(4):565-571.(in Chinese)
[4] 王先彬, 妥进才, 周世新, 等. 地球深部有机质演化与油气资源[J]. 石油勘探与开发, 2005, 32(4):159-164.Wang X B, Tuo J C, Zhou S X, et al. Organic matter evolution and oil-gas resource in deep earth[J]. Petroleum Exploration and Development, 2005, 32(4):159-164.(in Chinese)
[5] 傅杰. 高温液态水中的脱羧反应[D]. 杭州:浙江大学, 2010.Fu J. Studies on decarboxylation reactions in high temperature liquid water[D]. Hangzhou:Zhejiang University, 2010. (in Chinese)
[6] Левшунова СЛ.The necessary of extra hydrogen on the formation of hydrocarbons in sediments[J].Translated Guan Fuxi Petroleum Geology and Experiment,1996,3:93-94.
[7] 王先彬,妥进才,阎宏,等.深层石油天然气形成机制[C]//中国地质学会沉积地质专业委员会、中国矿物岩石地球化学学会沉积学专业委员会、中国地质大学(武汉).2001年全国沉积学大会摘要论文集.武汉:中国地质大学,2001.163-164.Wang X B, Tuo J C, Yan H, et al. The Formation mechanism of deep oil and gas[C]//The Meeting abstract on Chinese sedimentology in 2001. Wuhan:China University of Geosciences, 2001, 163-164. (in Chinese)
[8] 张铭杰, 王先彬, 李立武, 等. 幔源矿物中H2赋存状态的初步研究[J]. 地质学报, 2002, 76(1):39-44.Zhang M J, Wang X B, Li L W, et al. Mode of occurrence of H2 in mantle-derived minerals[J]. Acta Geologica Sinica, 2002, 76(1):39-44.(in Chinese)
[9] 孙丽娜, 张明峰, 吴陈君, 等. 水对不同生烃模拟实验系统产物的影响[J]. 天然气地球科学, 2015, 26(3):524-532.Sun L N, Zhang M F, Wu C J, et al. The effect of water medium on the products of different pyrolysis system[J]. Natural Gas Geoscience, 2015, 26(3):524-532.(in Chinese)
[10] 王晓锋, 刘文汇, 徐永昌, 等. 水在有机质形成气态烃演化中作用的热模拟实验研究[J]. 自然科学进展, 2006, 16(10):1275-1281. Wang X F, Liu W H, Xu Y C, et al. Thermal simulation experimental study on the role of water in the formation of organic matter and the evolution of gaseous Hydrocarbons[J]. Progress in Natural Science, 2006, 16(10):1275-1281.(in Chinese)
[11] 郑伦举. PVT共控作用下油气的形成过程与演化模式[D]. 武汉:中国地质大学, 2013.Zheng L J. Formation process and evolution mode of petroleum controlled by PVT[D]. Wuhan:China University of Geosciences, 2013. (in Chinese)
[12] Akiya N, Savage P E. Roles of water for chemical reactions in high-temperature water[J]. ChemInform, 2002, 33(43):293.
[13] Lewan M D, Roy S. Role of water in hydrocarbon generation from Type-I kerogen in Mahogany oil shale of the Green River Formation[J]. Organic Geochemistry, 2011, 42(1):31-41.
[14] 吴亮亮,廖玉宏,方允鑫,等.不同成熟度烃源岩的催化加氢热解与索氏抽提在生物标志物特征上的对比[J].科学通报,2012,57(32):3067-3077.Wu L L,Liao Y H,Fang Y X, et al. The comparison of biomarkers released by hydropyrolysis and by Soxhlet extraction from source rocks of different maturities[J].Chinese Science Bulletin,2012,57(32):3067-3077. (in Chinese)
[15] Lewan M. Laboratory simulation of petroleum formation-hydrous pyrolysis[M]//Engle M, Macko S. Organic Geochemistry. New York:Plenum Press,1993:419-442.
[16] Gao L, Schimmelmann A, Tang Y C, et al. Isotope rollover in shale gas observed in laboratory pyrolysis experiments:insight to the role of water in thermogenesis of mature gas[J]. Organic Geochemistry, 2014, 68:95-106.
[17] 寇小文, 顾雄毅, 李平. 氢能载体十氢萘制氢表观动力学[J]. 化工进展, 2015, 34(9):3279-3285.Kou X W, Gu X Y, Li P. Apparent kinetics of hydrogen production from hydrogen carrier decalin[J]. Chemical Industry and Engineering Progress, 2015, 34(9):3279-3285.(in Chinese)
[18] 寇小文. 十氢萘脱氢动力学研究及脱氢反应器模拟[D]. 上海:华东理工大学, 2015.Kou X W. Kinetics and reactor simulation of decalin dehydrogenation[D]. Shanghai:East China University of Science and Technology, 2015. (in Chinese)
[19] Zhou Q, Li P, Wang X L, et al. Preparation of CNF-supported Pt catalysts for hydrogen evolution from decalin[J]. Materials Chemistry and Physics, 2011, 126(1/2):41-45.
[20] 李贺, 殷长龙, 赵雪萍, 等. 萘、四氢萘和十氢萘的加氢或脱氢反应与催化剂的研究进展[J]. 石油化工, 2014, 43(8):971-979. Li H, Yin C L, Zhao X P, et al. Progresses in hydrogenation or dehydrogenation of naphthalene, tetralin and decalin, and the catalysts[J]. Petrochemical Technology, 2014, 43(8):971-979.(in Chinese)
[21] Jaroszewska K, Masalska A, Bączkowska K, et al. Conversion of decalin and 1-methylnaphthalene over AlSBA-15 supported Pt catalysts[J]. Catalysis Today, 2012, 196(1):110-118.
[22] Ardakani S J, Smith K J. A comparative study of ring opening of naphthalene, tetralin and decalin over Mo2C/HY and Pd/HY catalysts[J]. Applied Catalysis A:General, 2011, 403(1/2):36-47.
[23] 董丽红, 安思谨, 王变阳. 鄂尔多斯盆地三叠系延长组长7、长9油页岩分布特征与油气富集关系[J]. 非常规油气, 2014, 1(1):17-21.Dong L H, An S J, Wang B Y. Relationship between distribution of hydrocarbon source rocks and oil-gas enrichment of Yanchang formation, Triassic, Ordos Basin[J]. Unconventional Oil & Gas, 2014, 1(1):17-21.(in Chinese)
[24] Zhao J F, Mountney N P, Liu C Y, et al. Outcrop architecture of a fluvio-lacustrine succession:upper triassic yanchang formation, Ordos Basin, China[J]. Marine and Petroleum Geology, 2015, 68:394-413.
[25] 杨华.鄂尔多斯盆地晚三叠世沉积地质与油藏分布规律[M].北京:科学出版社,2002. Yang H. Sedimentary geology and reservoir distribution of late triassic in Ordos Basin[M]. Beijing:Science Press, 2002. (in Chinese).
[26] 王宝萍, 崔维兰, 张凤奇, 等. 鄂尔多斯盆地东南部富县-黄龙地区长8油层组勘探潜力分析[J]. 非常规油气, 2015, 2(3):27-33.Wang B P, Cui W L, Zhang F Q, et al. Analysis on exploration potential of chang 8 pay zone in Fuxian-Huanglong area, southeastern Ordos Basin[J]. Unconventional Oil & Gas, 2015, 2(3):27-33.(in Chinese)
[27] 李文厚, 刘溪, 张倩, 等. 鄂尔多斯盆地中晚三叠世延长期沉积演化[J]. 西北大学学报(自然科学版), 2019, 49(4):605-621.Li W H, Liu X, Zhang Q, et al. Deposition evolution of middle-late triassic yanchang formation in Ordos Basin[J]. Journal of Northwest University (Natural Science Edition), 2019, 49(4):605-621.(in Chinese)
[28] 郭艳琴, 李文厚, 郭彬程, 等. 鄂尔多斯盆地沉积体系与古地理演化[J]. 古地理学报, 2019, 21(2):293-320.Guo Y Q, Li W H, Guo B C, et al. Sedimentary systems and palaeogeography evolution of Ordos Basin[J]. Journal of Palaeogeography, 2019, 21(2):293-320.(in Chinese)
[29] 马小敏. 黄县盆地褐煤的有机岩石学特征与生烃研究[J]. 煤矿安全, 2015, 46(3):48-50.Ma X M. Study on organic petrologic characteristics and hydrocarbon generation of brown coal in Huangxian Basin[J]. Safety in Coal Mines, 2015, 46(3):48-50.(in Chinese)
[30] Tissot B P, Welte D H. Petroleum formation and occurrence[M]. Berlin, Heidelberg:Springer Berlin Heidelberg, 1978.
[31] 曹锡章,宋天佑,王杏乔.无机化学[M].北京:高等教育出版社,1994.Cao X Z, Song T Y, Wang X Q. Inorganic chemistry[M]. Beijing:Higher Education Press, 1994. (in Chinese)