船行波激励下施工栈桥动力响应及控制研究
作者:
中图分类号:

TU997

基金项目:

重庆市自然基金资助项目(cstc2019jscx-msxmX0313);国家自然科学基金资助项目(51578095)。


Dynamic response and control analysis of construction trestle under ship waves excitation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在船行波的激励下,施工栈桥会产生较大的位移和加速度响应,影响施工作业、造成过往人员恐慌,甚至造成栈桥过大变形,埋下安全隐患。针对这一问题,以郑万高铁某特大桥的施工栈桥为依托,基于线性波理论简化船行波荷载计算,通过附加质量法考虑水体对结构频率的影响,采用附加阻尼考虑水体对钢管桩振动的抑制作用,分别考虑中小型客船与大型驳船,通过谐响应分析法计算两类船行波下钢管桩的动力响应规律。结果表明,水体对栈桥钢管桩频率的影响较大,而水体外阻尼对钢管桩动力响应的抑制作用可忽略;中小型客船引发栈桥过大位移的机理为共振反应,而大型驳船导致栈桥过大位移的原因在于船行波荷载较大;建议中小型客船限速为15 km/h,以防止共振;大型驳船限速10 km/h,以减小波浪荷载大小,保证施工栈桥的安全。

    Abstract:

    Under the excitation of ship waves, a large displacement and acceleration response could be generated to the construction trestle, which will affect the construction operation, cause panic among workers, and even lead to an excessive deformation, thus laying potential safety risks. In this paper, using the construction trestle of a large bridge on Zhengwan high-speed railway as the experimental subject, the dynamic response and control analysis of construction trestle under ship waves excitation were examined. Firstly, the calculation of ship waves load simplified by linear wave theory was used. Then, the effect of water on structure frequency was investigated by additional mass method, and the restraining effect of water on steel pipe pile vibration was calculated by additional damping method. To study the dynamic response of steel pipe piles, the analysis of harmonic response was used to discuss the effect of two classes of ship waves, causing by small and medium-sized passenger ships or barges separately. The results show that the influence of water on the frequency of trestle steel pipe pile was great, while the effect of external damping on the dynamic response of steel pipe pile could be neglected. The mechanism of excessive displacement of the trestle caused by small and medium-sized passenger ships was resonance response, while the reason of excessive displacement of the trestle caused by barges was heavy load. To ensure the safety of trestle construction, it is suggested that the speed limit of passenger ships be 15 km/h to prevent resonance, and barges’ speed limit be 10 km/h to reduce the wave load.

    参考文献
    [1] 王新宇, 朱仁传, 陈曦, 等. 高阶面元法求解非线性船行波问题[J]. 哈尔滨工程大学学报, 2018, 39(2):229-235. Wang X Y, Zhu R C, Chen X, et al. A solution of ship waves with nonlinear free surface by high order panel method[J]. Journal of Harbin Engineering University, 2018, 39(2):229-235.(in Chinese)
    [2] Abbasnia A, Soares C G. Fully nonlinear and linear ship waves modelling using the potential numerical towing tank and NURBS[J]. Engineering Analysis With Boundary Elements, 2019, 103:137-144.
    [3] 石博文, 刘正江, 杨波. CFD方法的船舶骑浪稳性研究[J]. 哈尔滨工程大学学报, 2017, 38(7):1035-1040.Shi B W, Liu Z J, Yang B. Study on the surf-riding stability of a vessel based on CFD[J]. Journal of Harbin Engineering University, 2017, 38(7):1035-1040.(in Chinese)
    [4] 赵文宾, 管煜琼. 澜沧江某渡槽内船行波分布规律研究及消能设施效果研究[J]. 珠江水运, 2019(7):110-111.Zhao W B, Guan Y Q. Study on the distribution law of ship traveling wave in an aqueduct of lancang river and the effect of energy dissipation facilities[J]. Pearl River Water Transport, 2019(7):110-111.(in Chinese)
    [5] 徐博, 魏凯. 基于RANS的跨海桥梁高桩承台波浪作用数值模拟[J]. 铁道标准设计, 2019, 63(12):79-84.Xu B, Wei K. Numerical simulation of wave forces on elevated pile cap of sea-crossing brid ges based on RANS[J]. Railway Standard Design, 2019, 63(12):79-84.(in Chinese)
    [6] 李志松, 吴卫, 陈虹, 等. 内河航道中船行波在岸坡爬高的数值模拟[J]. 水动力学研究与进展(A辑), 2016, 31(5):556-566.Li Z S, Wu W, Chen H, et al. Numerical simulation of run-up of ship waves on slope bank in channel[J]. Chinese Journal of Hydrodynamics, 2016, 31(5):556-566.(in Chinese)
    [7] 陈虹, 吴少霖. 上海内河船行波研究[J]. 水运工程, 2017(11):124-128.Chen H, Wu S L. Study on ship wave in the inland waterway of Shanghai[J]. Port & Waterway Engineering, 2017(11):124-128.(in Chinese)
    [8] 姜辉, 马长飞, 王波. 刚构-连续梁组合桥悬臂施工阶段船行波动力响应分析[J]. 世界桥梁, 2017, 45(4):61-65.Jiang H, Ma C F, Wang B. Analysis of ship moving undulation force during cantilever construction of combined rigid-frame and continuous beam bridge[J]. World Bridges, 2017, 45(4):61-65.(in Chinese)
    [9] 陈星, 徐雪松. 船行波对系泊船的影响因素[J]. 水运工程, 2018(2):25-28.Chen X, Xu X S. Influence factors of ship-generated waves on moored ships[J]. Port & Waterway Engineering, 2018(2):25-28.(in Chinese)
    [10] 王亥索. 船行波对大型船舶与游艇组成的复式航道船舶间富裕宽度的影响[D]. 2011.Wang H S. Influence of ship traveling wave on the margin width between ships in the compound channel composed of large ships and yachts[D]. 2011.(in Chinese)
    [11] 高凯. 船舶兴波对船舶影响研究及其在受限水域中的应用[D]. 大连:大连海事大学, 2004.Gao K. The research of vessel generated waves and it's application in restricted waters[D]. Dalian:Dalian Maritime University, 2004. (in Chinese)
    [12] 汪舟红, 韩国松. 船行波对系泊船的影响分析[J]. 水运工程, 2015(9):28-34.Wang Z H, Han G S. Effect of ship wave on moored ship[J]. Port & Waterway Engineering, 2015(9):28-34.(in Chinese)
    [13] JTS 145-2015, 《港口与航道水文规范》[S].中华人民共和国交通运输部. 港口与航道水文规范:JTS 145-2015[S]. 北京:人民交通出版社, 2016.JTS 145-2015, code for hydrology of ports and waterways[S]. Ministry of transport of the people's Republic of China Hydrological code for port and waterway:JTS 145-2015[S]. Beijing:People's Communications Press, 2016.(in Chinese)
    [14] 刘政伟, 夏齐勇. 船行波激励下深水桥墩的动力响应分析[J]. 桥梁建设, 2018, 48(3):85-89.Liu Z W, Xia Q Y. Dynamic response analysis of bridge pier in deep water under excitation of ship-induced waves[J]. Bridge Construction, 2018, 48(3):85-89.(in Chinese)
    [15] 张敏. 桥墩与河水流固耦合振动分析[D]. 大连:大连交通大学, 2006.Zhang M. Vibration analysis of solid-fluid interaction for the pier-river water[D]. Dalian:Dalian Jiaotong University, 2006. (in Chinese)
    [16] 于肖宇, 张继革, 顾卫国, 等. 薄壁圆筒结构附加质量的实验研究[J]. 水动力学研究与进展A辑, 2010, 25(5):655-659.Yu X Y, Zhang J G, Gu W G, et al. Experimental study of added mass of the thin-walled cylinder structure[J]. Chinese Journal of Hydrodynamics, 2010, 25(5):655-659.(in Chinese)
    [17] 王元战, 王朝阳. 考虑流固耦合影响的水中桩基结构振动特性分析[J]. 水道港口, 2013, 34(1):73-79.Wang Y Z, Wang Z Y. Vibration characteristics analysis for underwater pile foundation structure considering fluid-structure interation[J]. Journal of Waterway and Harbor, 2013, 34(1):73-79.(in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈永亮,刘纲.船行波激励下施工栈桥动力响应及控制研究[J].重庆大学学报,2022,45(5):96-106.

复制
分享
文章指标
  • 点击次数:251
  • 下载次数: 544
  • HTML阅读次数: 703
  • 引用次数: 0
历史
  • 收稿日期:2021-12-19
  • 在线发布日期: 2022-06-11
文章二维码