档案管理中文本数据的增量多模态聚类方法
作者:
中图分类号:

TP39

基金项目:

内蒙古自治区教育科学"十三五"规划2019年度课题(NGJGH2019360);内蒙古财经大学2019年校级教育教学课题(JXYB1924)。


Incremental multi-modal clustering methods for text data in archives administration
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    随着现代档案管理数据量的不断增长,有效地对档案文本进行聚类划分能够提升档案分类和检索的效率。文中提出2种增量多模态文本数据聚类方法,通过对文本内容进行多视角分析,融合挖掘文本的潜在主题特征,提升文本聚类的准确性。此外,设计文本聚类多模态增量学习模型,提升海量、动态文本划分的效率。在文本数据集上的实验结果表明,文中提出的增量多模态文本聚类方法优于单模态和多模态聚类算法,能够对文本数据进行有效划分。

    Abstract:

    With the continuous growth of modern archive management data, the effective clustering of archive text can significantly improve the efficiency of archive classification and retrieval. This paper proposes two incremental multi-modal text data clustering methods. By multi-perspective analysis of the text content, the potential topic features of texts are integrated to improve the accuracy of text clustering. In addition, the corresponding incremental multi-modal feature learning models for text clustering are designed to improve the efficiency of massive and dynamic text partition. Experimental results on real-world text data sets show that the proposed incremental multimodal text clustering methods outperform the compared stated-of-the-art methods, being able to effectively classify text data.

    参考文献
    [1] Zhao J, Xie X J, Xu X, et al. Multi-view learning overview:recent progress and new challenges[J]. Information Fusion, 2017, 38:43-54.
    [2] Zhao L, Chen Z K, Wang Z J. Unsupervised multiview nonnegative correlated feature learning for data clustering[J]. IEEE Signal Processing Letters, 2018, 25(1):60-64.
    [3] Amini M R, Usunier N, Goutte C. Learning from multiple partially observed views-an application to multilingual text categorization[J]. Advances in Neural Information Processing Systems, 2009:28-36.
    [4] Amini M R, Goutte C. A co-classification approach to learning from multilingual corpora[J]. Machine Learning, 2010, 79(1/2):105-121.
    [5] Blum A, Mitchell T. Combining labeled and unlabeled data with co-training[C]//Proceedings of the Eleventh Annual Conference on Computational Learning Theory. New York, USA:ACM Press, 1998:92-100.
    [6] Lee D D, Seung H S. Algorithms for non-negative matrix factorization[C]//Advances in Neural Information Processing Systems, 2001:556-562.
    [7] 李乐, 章毓晋. 非负矩阵分解算法综述[J]. 电子学报, 2008, 36(4):737-743.Li L, Zhang Y J. A survey on algorithms of non-negative matrix factorization[J]. Acta Electronica Sinica, 2008, 36(4):737-743.(in Chinese)
    [8] Zhao L, Chen Z, Yang Y, et al. Incomplete multi-view clustering via deep semantic mapping[J]. Neurocomputing, 2018, 275:1053-1062.
    [9] Li Z, Tang J, He X. Robust structured nonnegative matrix factorization for image representation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 29(5):1947-1960.
    [10] Zheng H, Liang Z X, Tian F, et al. NMF-based comprehensive latent factor learning with multiview Data[C]//2019 IEEE International Conference on Image Processing (ICIP). IEEE, 2019:489-493.
    [11] Xu W, Liu X, Gong Y. Document clustering based on non-negative matrix factorization[C]//Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Toronto, Canada, 2003:267-273.
    [12] Brunet J P, Tamayo P, Golub T R, et al. Metagenes and molecular pattern discovery using matrix factorization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(12):4164-4169.
    [13] Bucak S S, Gunsel B. Incremental subspace learning via non-negative matrix factorization[J]. Pattern Recognition, 2009, 42(5):788-797.
    [14] Shao W X, He L F, Lu C T, et al. Online unsupervised multi-view feature selection[C]//2016 IEEE 16th International Conference on Data Mining (ICDM). IEEE, 2016:1203-1208.
    [15] Cai D, He X F, Han J W, et al. Graph regularized nonnegative matrix factorization for data representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8):1548-1560.
    [16] Qiu X, Chen Z, Zhao L, et al. Unsupervised multi-view non-negative for law data feature learning with dual graph-regularization in smart Internet of Things[J]. Future Generation Computer Systems, 2019, 100:523-530.
    相似文献
    引证文献
引用本文

刘丽华.档案管理中文本数据的增量多模态聚类方法[J].重庆大学学报,2022,45(5):147-156.

复制
分享
文章指标
  • 点击次数:357
  • 下载次数: 577
  • HTML阅读次数: 835
  • 引用次数: 0
历史
  • 收稿日期:2020-02-27
  • 在线发布日期: 2022-06-11
文章二维码