基于半导体制冷的动力锂电池包散热优化
作者:
中图分类号:

TM912

基金项目:

国家自然科学基金资助项目(51975075);重庆市技术创新与应用发展专项资助项目(cstc2020jscx-msxmX0202)。


Heat dissipation optimization of lithium-ion battery pack based on semiconductor refrigeration
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为提升动力锂电池包的散热性能和能量密度,基于半导体制冷方案,提出一种多目标优化设计方法,对动力锂电池包的排布间距和半导体制冷量进行优化设计。基于建立的半导体制冷方案的热分析模型,采用拉丁超立方试验及径向基函数(radial basis function,RBF)、响应面法(response surface methodology,RSM)、Kriging代理模型方法建立最高温度、最大温差及间距体积的近似模型。以最大温差和间距体积为目标,最高温度为约束建立电池包散热优化模型,运用多目标遗传算法(multi-objective genetic algorithm,MOGA)进行寻优求解,并通过实验验证优化方案仿真结果的可靠性。优化后仿真结果表明:电池模组间距体积减小了32.42%,最大温差降低了13.64%,最高温度降低了0.53%,该方法显著地提升了电池包的散热性能和能量密度。

    Abstract:

    In order to improve the heat dissipation performance and energy density of power lithium battery packs, based on the semiconductor refrigeration scheme, a multi-objective optimization design method is proposed to optimize the arrangement of power lithium battery packs and semiconductor cooling capacity. Based on the established thermal analysis model of the semiconductor refrigeration scheme, the Latin hypercube test, radial basis function (RBF), response surface methodology (RSM), and Kriging proxy model methods are used to establish the approximate model of the maximum temperatures, maximum temperature difference and pacing volume. Taking the maximum temperature difference and spacing volume as the goal and the maximum temperature as the constraint, the battery pack heat dissipation optimization model is established. Then, the optimization solution is found by using the multi-objective genetic algorithm. Finally, and the reliability of the simulation results of the optimization scheme is verified through experiments. The simulation results after optimization show that the battery module spacing volume is reduced by 32.42%, the maximum temperature difference is reduced by 13.64%, and the maximum temperature is reduced by 0.53%. This method significantly improves the heat dissipation performance and energy density of the battery packs.

    参考文献
    [1] Qian X, Xuan D, Zhao X, et al. Heat dissipation optimization of lithium-ion battery pack based on neural networks[J]. Applied Thermal Engineering, 2019, 162:114289.
    [2] Yang T, Yang N, Zhang X, et al. Investigation of the thermal performance of axial-flow air cooling for the lithium-ion battery pack[J]. International Journal of Thermal Sciences, 2016, 108:132-144.
    [3] Yu K, Yang X, Cheng Y, et al. Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack[J]. Journal of Power Sources, 2014, 270:193-200.
    [4] Yang X H, Tan S C, Liu J. Thermal management of Li-ion battery with liquid metal[J]. Energy Conversion and Management, 2016, 117:577-585.
    [5] Rao Z, Qian Z, Kuang Y, et al. Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface[J]. Applied Thermal Engineering, 2017, 123:1514-1522.
    [6] Azizi Y, Sadrameli S M. Thermal management of a LiFePO4 battery pack at high temperature environment using a composite of phase change materials and aluminum wire mesh plates[J]. Energy Conversion and Management, 2016, 128:294-302.
    [7] Zhao J, Lv P, Rao Z. Experimental study on the thermal management performance of phase change material coupled with heat pipe for cylindrical power battery pack[J]. Experimental Thermal and Fluid Science, 2017, 82:182-188.
    [8] 张晓波,张保会,董梁.微电网中电动汽车充电模式与换电模式的运行优化[J].电力系统自动化, 2016, 40(9):56-63.Zhang X B, Zhang B H, Dong L. Operation optimization of electric vehicle charging mode and power exchange mode in microgrid[J]. Automation of Electric Power Systems, 2016, 40(9):56-63.(in Chinese)
    [9] Siddique A R M, Mahmud S, Van H B. A comprehensive review on a passive (phase change materials) and an active (thermoelectric cooler) battery thermal management system and their limitations[J]. Journal of Power Sources, 2018, 401:224-237.
    [10] Lyu Y, Siddigque A R M, Majid S H, et al. Electric vehicle battery thermal management system with thermoelectric cooling[J]. Energy Reports, 2019, 5:822-827.
    [11] Zhao J, Rao Z, Huo Y, et al. Thermal management of cylindrical power battery module for extending the life of new energy electric vehicles[J]. Applied Thermal Engineering, 2015, 85:33-43.
    [12] Chen K, Wang S, Song M, et al. Configuration optimization of battery pack in parallel air-cooled battery thermal management system using an optimization strategy[J]. Applied Thermal Engineering, 2017, 123:177-186.
    [13] Yang N, Zhang X, Li G, et al. Assessment of the forced air-cooling performance for cylindrical lithium-ion battery packs:A comparative analysis between aligned and staggered cell arrangements[J]. Applied Thermal Engineering, 2015, 80:55-65.
    [14] Li W, Xiao M, Peng X B, et al. A surrogate thermal modeling and parametric optimization of battery pack with air cooling for EVs[J]. Applied Thermal Engineering, 2018, 147:90-100.
    [15] 秦大同,马兆强,胡明辉,等.混合动力车用镍氢电池组散热系统CFD仿真分析与实验验证[J].重庆大学学报, 2013, 36(8):1-8.Qin D T, Ma Z Q, Hu M H, et al. CFD simulation analysis and experimental verification on heat dissipation system of Ni-MH battery packs in HEV[J]. Journal of Chongqing University, 2013, 36(8):1-8.(in Chinese)
    [16] 李军求,吴朴恩,张承宁.电动汽车动力电池热管理技术的研究与实现[J].汽车工程, 2016, 38(1):22-27.Li J Q, Wu P E, Zhang C N. Study and implementation of thermal management technology for the power batteries of electric vehicles[J]. Automotive Engineering, 2016, 38(1):22-27.(in Chinese)
    [17] Cai Y, Wang Y, Liu D, et al. Thermoelectric cooling technology applied in the field of electronic devices:Updated review on the parametric investigations and model developments[J]. Applied Thermal Engineering, 2019, 148:238-255.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

屈世阳,李聪波,林利红,李伟,黄明利.基于半导体制冷的动力锂电池包散热优化[J].重庆大学学报,2022,45(6):14-26.

复制
分享
文章指标
  • 点击次数:494
  • 下载次数: 993
  • HTML阅读次数: 830
  • 引用次数: 0
历史
  • 收稿日期:2021-01-05
  • 最后修改日期:2021-04-25
  • 在线发布日期: 2022-06-18
文章二维码