电动车辆锂离子电池传感器故障诊断方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

U463.63

基金项目:

国家自然科学基金资助项目(51807071);重庆市技术预见与制度创新项目(cstc2020jsyj-ydxwtAX0006)。


Fault diagnosis of lithium-ion battery sensors for electric vehicles
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为降低锂离子电池传感器故障对电动车辆安全与性能的影响,提出了一种基于观测器的电池传感器故障诊断方法。结合锂离子电池电热耦合动态模型,构建2个扩展卡尔曼滤波(extended Kalman filter,EKF)观测器,估计电池单体的状态量,对比状态量估计值与传感器测量值以生成残差,并使用累计和(cumulative sum,CUSUM)测试方法进行残差评价,根据残差组合的不同响应情况实现锂离子电池电流传感器、电压传感器以及表面温度传感器故障的诊断与分离(fault diagnosis and isolation,FDI)。在不同的传感器故障情况下对诊断方法进行测试,结果表明,该方法能够及时准确地对锂离子电池单体3种传感器故障进行诊断与定位,性能表现优异且易于实施。

    Abstract:

    In order to reduce the impact of lithium-ion battery sensor faults on the safety and performance of electric vehicles, an observer-based fault diagnosis scheme was presented to detect and isolate battery sensor faults in this paper. The proposed scheme constructed two extended Kalman filter (EKF) observers in combination with the coupling electro-thermal dynamic model of Li-ion battery to realize state estimation. The difference between the estimated value and the sensor measured value generated the residual. Then the residuals were evaluated by statistical cumulative sum(CUSUM) test that determined the presence of the faults. According to the respond of two residuals, the fault diagnosis and isolation (FDI) of the current sensor, the voltage sensor and the surface temperature sensor could be realized. The proposed scheme was tested to verify its effectiveness. The result shows that the proposed scheme can diagnose and locate three kinds of lithium-ion battery cell sensor faults in time and accurately, demonstrating excellent performance and easy implementation.

    参考文献
    相似文献
    引证文献
引用本文

许俊雄,冯飞,邓忠伟.电动车辆锂离子电池传感器故障诊断方法[J].重庆大学学报,2022,45(6):27-39.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-12-30
  • 最后修改日期:2021-04-23
  • 录用日期:
  • 在线发布日期: 2022-06-18
  • 出版日期:
文章二维码