基于深度学习神经网络和量子遗传算法的柔性作业车间动态调度
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH11

基金项目:

重庆市技术创新与应用示范项目(cstc2018jszx-cyzdX0163)。


Dynamic scheduling of flexible job shop based on deep Q-learning neural network and quantum genetic algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对柔性作业车间动态调度问题构建以平均延期惩罚、能耗、偏差度为目标的动态调度优化模型,提出一种基于深度Q学习神经网络的量子遗传算法。首先搭建基于动态事件扰动和周期性重调度的学习环境,利用深度Q学习神经网络算法,建立环境行为评价神经网络模型作为优化模型的适应度函数。然后利用改进的量子遗传算法求解动态调度优化模型。该算法设计了基于工序编码和设备编码的多层编码解码方案;制定了基于适应度的动态调整旋转角策略,提高了种群的收敛速度;结合基于Tent映射的混沌搜索算法,以跳出局部最优解。最后通过测试算例验证了环境-行为评价神经网络模型的鲁棒性和对环境的适应性,以及优化算法的有效性。

    Abstract:

    To deal with the problem of dynamic scheduling of flexible job shop, a dynamic scheduling optimization model was constructed to minimize average delay penalty, energy consumption and deviation, and an ameliorated quantum genetic algorithm based on deep Q-learning neural network was proposed. First, a learning environment based on dynamic event disturbance and periodic rescheduling was built, and an environment-behavior evaluation neural network model was established using deep Q-learning neural network algorithm as the fitness function of the optimization model. Then the dynamic scheduling optimization model was solved by using the improved quantum genetic algorithm which designed a multi-layer encoding and decoding scheme based on process encoding and equipment encoding. A strategy for dynamically adjusting the rotation angle based on fitness was developed to improve the convergence speed of the population and exclude local solutions by combining with chaos-based Tent mapping search. Finally, test cases verified the robustness and adaptability of the environment-behavior evaluation neural network model, as well as the effectiveness of the optimization algorithm.

    参考文献
    相似文献
    引证文献
引用本文

陈亮,阎春平,陈建霖,侯跃辉.基于深度学习神经网络和量子遗传算法的柔性作业车间动态调度[J].重庆大学学报,2022,45(6):40-54.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-12-30
  • 最后修改日期:2021-05-18
  • 录用日期:
  • 在线发布日期: 2022-06-18
  • 出版日期:
文章二维码