增压汽油机面向控制的充量模型及其数值标定
作者:
中图分类号:

TK411.3

基金项目:

重庆市技术创新与应用发展专项面上项目(cstc2019jscx-msxmX0016);重庆市研究生科研创新项目(CYS20017)。


Control oriented intake model and its numerical calibration for a turbocharged gasoline engine
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    缸内进气量作为电控系统喷油和空燃比前馈控制的基础,对扭矩控制和排放性能至关重要。为了更简便、准确地估算缸内进气量,提出一种面向控制的充量模型,并基于Simulink软件完成该模型的搭建。引入GT-POWER仿真工具辅助标定,完成对充量模型中进气道传热因子、缸内驻留废气关键参数和气门实际流通面积的标定。最后将充量模型计算结果分别与仿真结果及台架试验结果验证对比,提出的充量模型稳态进气量的计算误差均在5%以内,表明提出的充量模型为发动机系统控制提供了一种较为可行的方法。

    Abstract:

    As the basis for the control of fuel injection and air-fuel ratio feedforward in the electronic control system, the in-cylinder intake air mass is essential for torque control and emission performance. To more simply and accurately estimate the in-cylinder air charge, a control-oriented model for the intake air is proposed in this paper, and based on the Simulink software, the intake model is further established. By introducing the GT-POWER simulations to assist the calibration, the calibration of heat transfer factor of the intake port, the key parameters of the in-cylinder trapped gas and the actual valve flow area is completed in the intake model. Finally, the calculation results of the intake model are compared with the simulation results and test results. The findings show that the calculation errors of the steady-state intake air mass are all within 5%, indicating that the proposed intake model provides a more feasible method for engine system control.

    参考文献
    [1] Wang Z, Zhu Q L, Prucka R. A review of spark-ignition engine air charge estimation methods[J/OL]. SAE Technical Papers, 2016:2016-01-0620[2021-02-05]. https://www.sae.org/publications/technical-papers/content/2016-01-0620/.
    [2] Li Q Y, Liu J P, Fu J Q, et al. Comparative study on the pumping losses between continuous variable valve lift (CVVL) engine and variable valve timing (VVT) engine[J]. Applied Thermal Engineering, 2018, 137:710-720.
    [3] Piqueras P, De la Morena J, Sanchis E J, et al. Impact of exhaust gas recirculation on gaseous emissions of turbocharged spark-ignition engines[J]. Applied Sciences, 2020, 10(21):7634.
    [4] Wang Y C, Hao C X, Ge Y S, et al. Fuel consumption and emission performance from light-duty conventional/hybrid-electric vehicles over different cycles and real driving tests[J]. Fuel, 2020, 278:118340.
    [5] Khameneian A, Wang X, Dice P, et al. Model-based dynamic in-cylinder air charge, residual gas and temperature estimation for a GDI spark ignition engine using cylinder, intake and exhaust pressures[C/OL]//ASME 2020 Dynamic Systems and Control Conference, October 5-7, 2020, Virtual, Online. Volume 2:Intelligent Transportation/Vehicles; Manufacturing; Mechatronics; Engine/After-Treatment Systems; Soft Actuators/Manipulators; Modeling/Validation; Motion/Vibration Control Applications; Multi-Agent/Networked Systems; Path Planning/Motion Control; Renewable/Smart Energy Systems; Security/Privacy of Cyber-Physical Systems; Sensors/Actuators; Tracking Control Systems; Unmanned Ground/Aerial Vehicles; Vehicle Dynamics, Estimation, Control; Vibration/Control Systems; Vibrations. The American Society of Mechanical Engineers, 2020:DSCC2020-3280[2021-02-05]. https://asmedigitalcollection.asme.org/DSCC/proceedings/DSCC2020/84287/V002T26A002/1096544.
    [6] Kakaee A H, Mashadi B, Ghajar M. A novel volumetric efficiency model for spark ignition engines equipped with variable valve timing and variable valve lift Part 1:model development[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2017, 231(2):175-191.
    [7] Luján J M, Climent H, García-Cuevas L M, et al. Volumetric efficiency modelling of internal combustion engines based on a novel adaptive learning algorithm of artificial neural networks[J]. Applied Thermal Engineering, 2017, 123:625-634.
    [8] Guardiola C, Pla B, Bares P, et al. Cylinder charge composition observation based on in-cylinder pressure measurement[J]. Measurement, 2019, 131:559-568.
    [9] Wang Z, Zhu Q L, Prucka R, et al. Observer-based cylinder air charge estimation for spark-ignition engines[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(10):1-7.
    [10] Meng L, Luo J, Yang X, et al. Intake air mass observer design based on extended Kalman filter for air-fuel ratio control on SI engine[J]. Energies, 2019, 12(18):3444.
    [11] Leroy T, Chauvin J. Control-oriented aspirated masses model for variable-valve-actuation engines[J]. Control Engineering Practice, 2013, 21(12):1744-1755.
    [12] Eriksson L, Thomasson A. Cylinder state estimation from measured cylinder pressure traces-a survey[J]. IFAC-PapersOnLine, 2017, 50(1):11029-11039.
    [13] Wang X, Khameneian A, Dice P, et al. Model-based combustion duration and ignition timing prediction for combustion phasing control of a spark-ignition engine using in-cylinder pressure sensors[C]//Proceedings of ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, August 18-21, 2019, Anaheim, California, USA. The American Society of Mechanical Engineers, 2019:DETC2019-97703.
    [14] Desantes J M, Galindo J, Guardiola C, et al. Air mass flow estimation in turbocharged diesel engines from in-cylinder pressure measurement[J]. Experimental Thermal and Fluid Science, 2010, 34(1):37-47.
    [15] Thomasson A, Nikkar S, H ckerdal E. Cylinder pressure based cylinder charge estimation in diesel engines with dual independent variable valve timing[J/OL]. SAE Technical Papers, 2018:2018-01-0862[2021-02-05]. https://www.sae.org/publications/technical-papers/content/2018-01-0862/.
    [16] Yazdani A, Naber J, Shahbakhti M, et al. Air charge and residual gas fraction estimation for a spark-ignition engine using in-cylinder pressure[J/OL]. SAE Technical Papers, 2017:2017-01-0527[2021-02-05]. https://www.sae.org/publications/technical-papers/content/2017-01-0527/.
    [17] 任亚丹,王龙,李涛,等.涡轮增压天然气发动机电控系统进气模型研究[J].西安交通大学学报, 2018, 52(12):93-98. Ren Y D, Wang L, Li T, et al. Intake charge model of electronically controlled turbocharged natural gas engine[J]. Journal of Xi'an Jiaotong University, 2018, 52(12):93-98.(in Chinese)
    [18] Magner S, Jankovic M, Cooper S. Methods to reduce air-charge characterization data for high degree of freedom engines[J/OL]. SAE Technical Papers, 2004:2004-1-0903[2021-02-05]. https://www.sae.org/publications/technical-papers/content/2004-01-0903/.
    [19] Fox J W, Cheng W K, Heywood J B. A model for predicting residual gas fraction in spark-ignition engines[J]. SAE Transactions, 1993, 102:1538-1544.
    [20] Heywood J B. Internal combustion engine fundamentals[M]. New York:McGraw-Hill, 1998.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李林,张青,陈凌建,李元栋,张力.增压汽油机面向控制的充量模型及其数值标定[J].重庆大学学报,2022,45(6):85-97.

复制
分享
文章指标
  • 点击次数:369
  • 下载次数: 829
  • HTML阅读次数: 831
  • 引用次数: 0
历史
  • 收稿日期:2021-03-24
  • 最后修改日期:2021-04-30
  • 在线发布日期: 2022-06-18
文章二维码