馈能悬架的多模式智能控制策略
中图分类号:

U463

基金项目:

重庆市基础与前沿计划(cstc2018jcyjAX0630);国家重点研发计划(2017YFB0102603-3)。


A novel and intelligent multi-mode switching control strategy in energy regenerative suspension systems
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对主动悬架耗能而限制其在电动汽车中的应用问题,采用永磁(PM)直线电机作为主动悬架系统的执行机构,建立了整车动力学模型,研究了车辆动力学性能与能量回收能力之间的关系。基于最优控制理论设计了主动悬架LQG控制器,采用层次分析法(AHP)和粒子群优化(PSO)方法优化了控制器设计参数,提高了车辆动力学性能和能量回收能力。为了实现模式切换,提出了一种新的多模式切换控制策略。在控制策略中引入舒适性因素,该因素可由驾驶员调节或根据车辆行驶状态进行选择,从而实现了不同模式下的策略切换。仿真结果表明,所提出的多模式切换控制策略显著优于传统主动悬架控制模式,从而全面提升了整车动力学性能和能量再生能力,为悬架馈能控制策略提供指导。

    Abstract:

    In order to solve the problem of restrictive application of active suspension in electric vehicles due to energy consumption, using permanent magnet(PM) linear motor as the actuator of active suspension system, a dynamic model was developed to investigate the relationship between vehicle's dynamic performance and energy regenerative capability. The active suspension LQG controller was designed based on the optimal control theory, and the controller design parameters were optimized by analytic hierarchy process(AHP) and particle swarm optimization(PSO), which improved the vehicle dynamic performance and energy regenerative power. In order to achieve the state identification and mode switching, a novel multi-mode switch control strategy was proposed. The innovation of the proposed control strategy is the introduction of the comfort factors which depend on the driver's choice and the detailed identification of the driving state of the vehicle, so as to realize the strategy switching under different modes. The simulation results show that the proposed multi-mode switch control strategy is significantly better than conventional active suspension control mode, and achieves a comprehensive and intelligent improvement of dynamic performance and energy regenerative capability in vehicle. This study provides guidance for the suspension feed-energy control strategy.

    参考文献
    [1] Cao J T, Li P, Liu H H. An interval fuzzy controller for vehicle active suspension systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(4):885-895.
    [2] Wang R C, Gu F S, Cattley R, et al. Modelling, testing and analysis of a regenerative hydraulic shock absorber system[J]. Energies, 2016, 9(5):386.
    [3] 许广灿,徐俊,李士盈,等.电动汽车振动能量回收悬架及其特性优化[J].西安交通大学学报, 2016, 50(8):90-95. Xu G C, Xu J, Li S Y, et al. Energy regenerative suspension and its performance optimization for electric vehicle[J]. Journal of Xi'an Jiaotong University, 2016, 50(8):90-95.(in Chinese)
    [4] Zhang Y X, Zhang X J, Zhan M, et al. Study on a novel hydraulic pumping regenerative suspension for vehicles[J]. Journal of the Franklin Institute, 2015, 352(2):485-499.
    [5] Yan S, Sun W C. Self-powered suspension criterion and energy regeneration implementation scheme of motor-driven active suspension[J]. Mechanical Systems and Signal Processing, 2017, 94:297-311.
    [6] Casavola A, Di Iorio F, Tedesco F. A multiobjective H∞ control strategy for energy harvesting in regenerative vehicle suspension systems[J]. International Journal of Control, 2018, 91(4):741-754.
    [7] 钟孝伟,陈双,张不扬.基于卡尔曼滤波算法的车辆振动状态估计与最优控制研究[J].汽车技术, 2017(5):14-18. Zhong X W, Chen S, Zhang B Y. Research on state estimation and optimal control of vehicle vibration based on Kalman filter algorithm[J]. Automobile Technology, 2017(5):14-18.(in Chinese)
    [8] 包黎明,钟孝伟,王乾乾.基于UIO的汽车主动悬架系统状态估计[J].汽车实用技术, 2017(22):23-26. Bao L M, Zhong X W, Wang Q Q. Vehicle active suspension system based on UIO state estimation[J]. Automobile Applied Technology, 2017(22):23-26.(in Chinese)
    [9] 李鑫军,柳江,付延轩,等.基于AHP-GA的整车主动悬架LQG控制器设计[J].现代制造工程, 2019(10):70-76,34. Li X J, Liu J, Fu Y X, et al. Design of LQG controller for vehicle active suspension based on analytic hierarchy process and genetic algorithm[J]. Modern Manufacturing Engineering, 2019(10):70-76,34.(in Chinese)
    [10] 林爱桢.基于层次分析法的半主动悬架LQG控制器的设计[J].内燃机与配件, 2019(11):63-66. Lin A Z. Design of LQG controller for semi-active suspension based on AHP[J]. Internal Combustion Engine&Parts, 2019(11):63-66.(in Chinese)
    [11] Shi D H, Chen L, Wang R C, et al. Research on energy-regenerative performance of suspension system with semi-active control[J]. Journal of Vibration Engineering&Technologies, 2019, 7(5):465-475.
    [12] Gao Z P, Chen S Z, Zhao Y Z, et al. Numerical evaluation of compatibility between comfort and energy recovery based on energy flow mechanism inside electromagnetic active suspension[J]. Energy, 2019, 170:521-536.
    [13] 陈龙,施德华,汪若尘,等.基于混合控制策略的馈能悬架半主动控制[J].北京理工大学学报, 2016, 36(3):252-257. Chen L, Shi D H, Wang R C, et al. Semi-active control of energy-regenerative suspension based on hybrid control strategy[J]. Transactions of Beijing Institute of Technology, 2016, 36(3):252-257.(in Chinese)
    [14] Ning D H, Sun S S, Du H P, et al. Vibration control of an energy regenerative seat suspension with variable external resistance[J]. Mechanical Systems and Signal Processing, 2018, 106:94-113.
    [15] 裴金顺,李以农,王艳阳,等.采用电磁直线电机的主动悬架控制系统的设计与能量分析[J].汽车工程, 2014, 36(11):1386-1391,1377. Pei J S, Li Y N, Wang Y Y, et al. Design and energy analysis of an active suspension control system with electromagnetic linear motor[J]. Automotive Engineering, 2014, 36(11):1386-1391,1377.(in Chinese)
    [16] Zhang G G, Cao J Y, Yu F. Design of active and energy-regenerative controllers for DC-motor-based suspension[J]. Mechatronics, 2012, 22(8):1124-1134.
    [17] Huang K, Yu F, Zhang Y. Active controller design for an electromagnetic energy-regenerative suspension[J]. International Journal of Automotive Technology, 2011, 12(6):877-885.
    [18] 汪若尘,马晓炜,丁仁凯,等.基于模型参考的混合悬架多模式切换控制研究[J].农业机械学报, 2017, 48(7):353-360. Wang R C, Ma X W, Ding R K, et al. Multi-mode switching control system for hybrid suspension based on model reference[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(7):353-360.(in Chinese)
    [19] Chai L J, Sun T. The design of LQG controller for active suspension based on analytic hierarchy process[J]. Mathematical Problems in Engineering, 2010, 2010:1-19.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

代萍,温欣,李以农.馈能悬架的多模式智能控制策略[J].重庆大学学报,2022,45(6):108-120.

复制
分享
文章指标
  • 点击次数:393
  • 下载次数: 647
  • HTML阅读次数: 668
  • 引用次数: 0
历史
  • 收稿日期:2020-08-28
  • 最后修改日期:2021-04-27
  • 在线发布日期: 2022-06-18
文章二维码