改进YOLOv3的桥梁表观病害检测识别
作者:
中图分类号:

TP391.41

基金项目:

国家自然基金资助项目(51775072);重庆市科技创新领军人才支持计划项目(CSTCCCXLJRC201920)。


Bridge apparent disease detection based on improved YOLOv3
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对基于目标检测方法的桥梁表观病害检测存在检测精度低、误检率和漏检率高的问题,提出一种改进YOLOv3的高准确率桥梁表观病害检测识别方法。为实现局部特征和全局特征有效融合,在YOLOv3的检测层中添加固定分块大小的池化模块,并在YOLOv3的特征提取网络中引入了DenseNet密集型连接网络结构以增强桥梁病害特征在网络中的传播和利用效率,提高检测效率,采用数据增强技术来扩充样本图像以解决现有桥梁病害数据集样本数量不足的问题。实验结果表明,改进后的YOLOv3在桥梁表观病害检测上的平均准确率比原YOLOv3提高了3.0%,且模型训练时间减少了33.2%,同时降低了对桥梁表观病害检测的误检率和漏检率。

    Abstract:

    To solve the problems of low detection accuracy, high false detection rate, and high missed detection rate in bridge apparent disease detection based on target detection method, a recognition method with high accuracy of bridge apparent disease detection based on improved YOLOv3 is proposed. A pooling module with a fixed block size is added to the detection layer of YOLOv3 to realize effective fusion of local features and global features. To enhance the transmission and utilization efficiency of bridge disease features in the network and improve the detection efficiency, a DenseNet dense connection network structure is introduced in the feature extraction network of YOLOv3. To deal with the insufficient number of samples in the existing bridge disease data set, data enhancement technology is used to expand the sample images. The experimental results show that the mean accuracy precision (mAP) of the improved YOLOv3 on bridge apparent disease detection is increased by 3.0% and the model training time decreased by 33.2%, with a reduced false detection rate and a lower missed detection rate.

    参考文献
    [1] 高迪,付鹏飞.探析道路桥梁施工中检测技术的应用[J].科技展望, 2014(10):66. Gao D, Fu P F. Analyze the application of detection technology in road and bridge construction[J]. Science and Technology Outlook, 2014(10):66.(in Chinese)
    [2] 滕亮.桥梁结构损伤识别指标比选及损伤程度识别方法研究[D].长春:吉林大学, 2014. Teng L. Research on comparision of damage detection indices and damage severity identification for bridge structure[D]. Changchun:Jilin University, 2014.(in Chinese)
    [3] Ellenberg A, Kontsos A, Bartoli I, et al. Masonry crack detection application of an unmanned aerial vehicle[C]//2014 International Conference on Computing in Civil and Building Engineering, June 23-25, 2014, Orlando, Florida, USA. Reston, VA, USA:American Society of Civil Engineers, 2014:1788-1795.
    [4] Prasanna P, Dana K, Gucunski N, et al. Computer-vision based crack detection and analysis[C]//Proceedings of SPIE 8345, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2012, San Diego, California, USA. Society of Photo-Optical Instrumentation Engineers (SPIE), 2012:834542.
    [5] Nishikawa T, Yoshida J, Sugiyama T, et al. Concrete crack detection by multiple sequential image filtering[J]. Computer-Aided Civil and Infrastructure Engineering, 2012, 27(1):29-47.
    [6] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2014, Columbus, OH, USA. IEEE, 2014:580-587.
    [7] Uijlings J R R, Sande K, Gevers T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2):154-171.
    [8] Ren S Q, He K M, Girshick R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
    [9] Kim I H, Jeon H, Baek S C, et al. Application of crack identification techniques for an aging concrete bridge inspection using an unmanned aerial vehicle[J]. Sensors, 2018, 18(6):1881.
    [10] Cha Y J, Choi W, Suh G, et al. Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(9):731-747.
    [11] Liu W, Anguelov D, Erhan D, et al. SSD:single shot MultiBox detector[M]//Computer vision-ECCV 2016. Cham:Springer International Publishing, 2016:21-37.
    [12] Redmon J, Divvala S, Girshick R, et al. You only look once:unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016:779-788.
    [13] Redmon J, Farhadi A. YOLOv3:an incremental improvement[EB/OL]. 2018-04-08[2020-12-06]. https://arxiv.org/abs/1804.02767.
    [14] Redmon J, Farhadi A. YOLO9000:better, faster, stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017:6517-6525.
    [15] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016:770-778.
    [16] Purkait P, Zhao C, Zach C. SPP-net:deep absolute pose regression with synthetic views[EB/OL]. 2017-12-09[2020-12-06]. https://arxiv.org/abs/1712.03452.
    [17] Huang G, Liu Z, Laurens V D M, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017:4700-4708.
    [18] Mundt M, Majumder S, Murali S, et al. Meta-learning convolutional neural architectures for multi-target concrete defect classification with the COncrete DEfect BRidge IMage dataset[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 15-20, 2019, Long Beach, CA, USA. IEEE, 2019:11188-11197.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周清松,董绍江,罗家元,秦悦,夏宗佑,杨建喜.改进YOLOv3的桥梁表观病害检测识别[J].重庆大学学报,2022,45(6):121-130.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-12-25
  • 最后修改日期:2021-05-14
  • 在线发布日期: 2022-06-18
文章二维码