基于多层次非负稀疏编码和SVM的窃电检测方法
作者:
中图分类号:

TM721

基金项目:

国家自然科学基金资助项目(51677012)。


Electricity theft detection based on multi-level non-negative sparse coding and electricity theft scenario analysis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对现有方法对新型窃电方式检测准确率不高的问题,文中提出了一种基于多层次非负稀疏编码和支持向量机(support vector machines, SVM)的窃电检测新方法。该方法以月度用电曲线为检测对象,基于多层次非负稀疏编码提取样本的多层次用电模式特征,以及窃电情景分析提取样本的数值统计特征,将二者的融合检测特征输入SVM分类器进行窃电检测。以爱尔兰智能电表数据集构造的算例验证了所提方法能够提高窃电检测的精确率和召回率。

    Abstract:

    Existing detection methods of electricity theft have low detection accuracy for new means of electricity theft. This paper proposes a new theft detection method based on multi-level non-negative sparse coding and SVM. Using the monthly electricity consumption curve as the detection object, firstly, the multi-level electricity consumption pattern characteristics of the sample are extracted based on the multi-level non-negative sparse coding; next, the numerical statistical characteristics of the sample are extracted based on the electricity theft scenario analysis; then, the fusion detection features of the above two characteristics are input into the SVM classifier for electricity theft detection. Finally, the Irish smart meter data set is used as the example to verify the effectiveness of the proposed method, showing the improved accuracy and recall rate of the detection.

    参考文献
    [1] 陈启鑫, 郑可迪, 康重庆, 等. 异常用电的检测方法:评述与展望[J]. 电力系统自动化, 2018, 42(17):189-199.Chen Q X, Zheng K D, Kang C Q, et al. Detection methods of abnormal electricity consumption behaviors:review and prospect[J]. Automation of Electric Power Systems, 2018, 42(17):189-199.(in Chinese)
    [2] Mclaughlin S, Podkuiko D, Mcdaniel P. Energy theft in the advanced metering infrastructure[J]. Lecture Notes in Computer Science, 2009, 6027:176-187.
    [3] 胡天宇, 郭庆来, 孙宏斌. 基于堆叠去相关自编码器和支持向量机的窃电检测[J]. 电力系统自动化, 2019, 43(1):119-125.Hu T Y, Guo Q L, Sun H B. Nontechnical loss detection based on stacked uncorrelating autoencoder and support vector machine[J]. Automation of Electric Power Systems, 2019, 43(1):119-125.(in Chinese)
    [4] Nagi J, Yap K S, Tiong S K, et al. Nontechnical loss detection for metered customers in power utility using support vector machines[J]. IEEE Transactions on Power Delivery, 2010, 25(2):1162-1171.
    [5] 许刚, 谈元鹏, 戴腾辉. 稀疏随机森林下的用电侧异常行为模式检测[J]. 电网技术, 2017,41(6):1964-1973. Xu G, Tan Y P, Dai T H. Sparse random forest based abnormal behavior pattern detection of electric power user side[J].Power System Technology, 2017, 41(6):1964-1973.(in Chinese)
    [6] Nizar A H, Dong Z Y, Wang Y. Power utility nontechnical loss analysis with extreme learning machine method[J]. IEEE Transactions on Power Systems, 2008, 23(3):946-955.
    [7] Passos L A J, Oba Ramos C C, Rodrigues D, et al. Unsupervised non-technical losses identification through optimum-path forest[J]. Electric Power Systems Research, 2016, 140:413-423.
    [8] 田力, 向敏. 基于密度聚类技术的电力系统用电量异常分析算法[J]. 电力系统自动化, 2017, 41(5):64-70.Tian L, Xiang M. Abnormal power consumption analysis based on density-based spatial clustering of applications with noise in power systems[J]. Automation of Electric Power Systems, 2017, 41(5):64-70.(in Chinese)
    [9] Liu X, Nielsen P. Regression-based online anomaly detection for smart grid data[EB/OL]. (2016-06-18)[2020-10-01]. https://arxiv.org/pdf/1606.05781.pdf.
    [10] Jiang R, Tagaris H, Lachsz A, et al. Wavelet based feature extraction and multiple classifiers for electricity fraud detection[C]//IEEE/PES Transmission and Distribution Conference and Exhibition. October 6-10, 2002, Yokohama, Japan. IEEE, 2002:2251-2256.
    [11] Badrinath Krishna V, Weaver G A, Sanders W H. PCA-based method for detecting integrity attacks on advanced metering infrastructure[M].Quantitative Evaluation of Systems, 2015:70-85.
    [12] Aharon M, Elad M, Bruckstein A M. K-SVD and its non-negative variant for dictionary design[C]//Optics and Photonics 2005. Proc SPIE 5914, Wavelets XI, San Diego, California, USA. 2005, 5914:591411.
    [13] Hoyer P O. Non-negative sparse coding[C]//Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing. September 6-6, 2002, Martigny, Switzerland. IEEE, 2002:557-565.
    [14] 王见, 陈义, 邓帅. 基于改进SVM分类器的动作识别方法[J]. 重庆大学学报, 2016, 39(1):12-17. Wang J, Chen Y, Deng S. A gesture-recognition algorithm based on improved SVM[J]. Journal of Chongqing University, 2016, 39(1):12-17.(in Chinese)
    [15] 李航. 统计学习方法[M]. 2版. 北京:清华大学出版社, 2019. Li H. Statistical learning methods[M]. 2rd. Beijing:Tsinghua University Press, 2019. (in Chinese)
    [16] Irish Social Science Data Archive. CER smart metering project-electricity customer behaviour trial[EB/OL]. (2012-12-30)[2021-03-05]. https://www.ucd.ie/issda/data/commissionforenergyregulationcer/.
    [17] McLaughlin S, Holbert B, Fawaz A, et al. A multi-sensor energy theft detection framework for advanced metering infrastructures[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(7):1319-1330.
    [18] Han W L, Xiao Y. Combating TNTL:non-technical loss fraud targeting time-based pricing in smart grid[C]//Cloud Computing and Security, 2016:48-57.
    [19] Zanetti M, Jamhour E, Pellenz M, et al. A tunable fraud detection system for advanced metering infrastructure using short-lived patterns[J]. IEEE Transactions on Smart Grid, 2019, 10(1):830-840.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄刚,颜伟,王浩,文旭,张爱枫,夏春.基于多层次非负稀疏编码和SVM的窃电检测方法[J].重庆大学学报,2022,45(7):1-12,23.

复制
分享
文章指标
  • 点击次数:399
  • 下载次数: 968
  • HTML阅读次数: 5307
  • 引用次数: 0
历史
  • 收稿日期:2021-01-24
  • 最后修改日期:2021-03-09
  • 在线发布日期: 2022-07-27
文章二维码