活塞发动机止动轮毂传动系统动态特性分析
作者:
中图分类号:

TH132.4

基金项目:

广西科技重大专项(桂科AA19182001);企业合作项目(H20200112)。


Analysis for dynamic characteristics of the doghub transmission system used in piston engine
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为揭示活塞发动机止动轮毂传动系统振动机理,在分析发动机止动轮毂系统工作原理的基础上,分别采用能量法与Adams多体动力学软件,建立了止动轮毂传动系统动力学模型,提出了止动轮毂三爪曲面接触系统动力学建模与分析方法。通过对比分析两种模型在额定工况下轴向力响应结果,相互验证了动力学仿真模型的正确性。为减轻止动轮毂系统振动冲击,研究了不同扭矩和轴向预紧力工况对止动轮毂系统轴向冲击力与位移的影响规律。结果表明:不同工况参数下的系统动态响应特性差异明显;随着扭矩由350 N·m增大到500 N·m,系统轴向冲击力增大,轴向位移增大近一倍;随着轴向预紧力由6 000 N逐步增大到8 000 N,系统轴向冲击力峰值逐渐增大,稳定后均值变化较小,轴向位移则随之减小。在额定扭矩工况下,取适当小的轴向预紧力,有利于减小止动轮毂系统所受的轴向冲击力,改善系统振动冲击。

    Abstract:

    In order to reveal the vibration mechanism of the engine doghub transmission system, based on the analysis of the working principle of the engine doghub system, the dynamic models of the engine doghub transmission system were established with the energy method and the Adams software. The dynamic modeling and analysis methods were proposed for three-jaw curved contact system of the doghub. By comparing the axial force response results of the two models under rated working condition, the correctness of the dynamic models was verified. To reduce the vibration and impact of the doghub transmission system, the influences of different torques and axial preloads on the axial impact force and displacement of the doghub system were studied. Results show that the dynamic response characteristics of the system under different operating conditions were significantly different. As the torque increased from 350 N·m to 500 N·m, the axial impact force of the system increased, and the axial displacement nearly doubled. As the axial preload gradually increased from 6 000 N to 8 000 N, the peak value of the system axial impact force increased, and the mean value changed slightly after stabilization, and the axial displacement decreased accordingly, suggesting that under the condition of rated torque, an appropriate small axial preload is beneficial to reducing the axial impact force on the doghub transmission system and relieving the vibration and impact of the system.

    参考文献
    [1] 鲍梦瑶, 丁水汀, 李果. 航空活塞发动机涡轮增压器失效关键影响因素分级[J]. 北京航空航天大学学报, 2019, 45(6):1071-1080.Bao M Y, Ding S T, Li G. Classification of key influence factors for failure of turbo supercharged piston aeroengine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6):1071-1080. (in Chinese)
    [2] 徐斌, 郑嘉, 杨世春, 等. 航空活塞发动机串联二级增压压比分配研究[J]. 航空动力学报, 2018, 33(4):769-775.Xu B, Zheng J, Yang S C, et al. Study of compression ratio distribution in two-stage series turbocharged aircraft piston engine[J]. Journal of Aerospace Power, 2018, 33(4):769-775. (in Chinese)
    [3] 王兆铭, 黄毅, 李诗军, 等. 某型航空发动机高原起动供油规律研究[J]. 航空发动机, 2014, 40(4):30-33.Wang Z M, Huang Y, Li S J, et al. Oil supply control law of plateau starting for an aeroengine[J]. Aeroengine, 2014, 40(4):30-33. (in Chinese)
    [4] Moorthy C V K N S N, Srinivas V, Kumar A. Modelling and performance analysis of aero piston engine[J]. Journal of Advanced Research in Dynamical and Control Systems, 2018, 10(7):344-348.
    [5] Singla S, Sharma M S, Gangacharyulu D. Study of design improvement of intake manifold of internal combustion engine[J]. International Journal of Engineering Technology, Management and Applied Sciences, 2015, 3:234-242.
    [6] Crosbie S C, Polanka M D, Litke P J, et al. Increasing reliability of a two-stroke internal combustion engine for dynamically changing altitudes[J]. Journal of Propulsion and Power, 2014, 30(1):87-95.
    [7] 郑国柱, 刘更, 吴立言. 某涡桨发动机减速器动态特性初步分析[C]//中国航空学会动力分会第十届机械动力传动专业学术研讨会. 北京:中国航空学会, 2001:84-88.Zheng G Z, Liu G, Wu L Y. Preliminary analysis of the dynamic characteristics of a turboprop engine reducer[C]//The 10th Mechanical Power Transmission Symposium of the Power Branch of the Chinese Society of Aeronautics. Beijing:Chinese Society of Aeronautics, 2001:84-88. (in Chinese)
    [8] 丁文强, 吴玉萍, 魏巍, 等. 航空发动机齿轮减速器振动噪声机理及其辐射噪声预测方法[J]. 南京航空航天大学学报, 2016, 48(6):789-795.Ding W Q, Wu Y P, Wei W, et al. Prediction methodology research on radiant noise of aero-engine gearbox based on vibration and noise mechanism[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2016, 48(6):789-795. (in Chinese)
    [9] 吴伟力, 刘亚. 涡桨发动机减速器振动故障判别[J]. 燃气涡轮试验与研究, 2016, 29(3):20-24, 6.Wu W L, Liu Y. Vibration failure identification of the turboprop engine reduction gear[J]. Gas Turbine Experiment and Research, 2016, 29(3):20-24, 6. (in Chinese)
    [10] Kolarević N, Micković D, Crnojević S, et al. Dynamic stability of high speed turboshaft engine with reducer[J]. IOP Conference Series:Materials Science and Engineering, 2018, 393:012070.
    [11] 程礼, 李思路, 郭立, 等. 某型发动机减速器齿轮毂裂纹故障研究[J]. 噪声与振动控制, 2017, 37(2):158-162, 167.Cheng L, Li S L, Guo L, et al. Crack fault analysis of the decelerator gear hub of an engine[J]. Noise and Vibration Control, 2017, 37(2):158-162, 167. (in Chinese)
    [12] 陈曦, 宋朝省, 朱才朝, 等. 电动车高速轮边齿轮传动动态特性分析与优化[J]. 重庆大学学报, 2017, 40(10):1-11.Chen X, Song C S, Zhu C C, et al. Analysis and optimization of the dynamic characteristics for high speed wheel reducer used in electric vehicle[J]. Journal of Chongqing University, 2017, 40(10):1-11. (in Chinese)
    [13] Hsieh C F. Dynamics analysis of cycloidal speed reducers with pinwheel and nonpinwheel designs[J]. Journal of Mechanical Design, 2014, 136(9):091008.
    [14] Chen Z M, Ou Y, Long S Y, et al. Vibration characteristics analysis of the new pin-cycloid speed reducer[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(2):1-17.
    [15] Mu R, Chang Z H, Kai F. Dynamic contact analysis for RV reducer[C]//Proceedings of the 5th International Conference on Advanced Design and Manufacturing Engineering. September 12-13, 2015. Shenzen, China. Paris, France:Atlantis Press, 2015:168-713.
    [16] Chen C, Yang Y H. Free vibration properties of rotate vector reducer[J]. Journal of Vibroengineering, 2016, 18(5):3089-3103.
    [17] 马建敏, 韩平畴. 柔性联轴器刚度非线性对扭转振动的影响[J]. 振动与冲击, 2005, 24(4):6-8, 13, 133.Ma J M, Han P C. Influence of nonlinear stiffness of flexible coupling on torsional vibration[J]. Journal of Vibration and Shock, 2005, 24(4):6-8, 13, 133. (in Chinese)
    [18] 马建敏, 杨万东. 柔性联轴器非线性阻尼对扭转减振的影响[J]. 振动与冲击, 2006, 25(3):11-13, 17, 202.Ma J M, Yang W D. Influence of nonlinear damping of flexible coupling on torsional vibration reduction[J]. Journal of Vibration and Shock, 2006, 25(3):11-13, 17, 202. (in Chinese)
    [19] Dakel M, Jézéquel L, Sortais J L. Stationary and transient analyses of a pulley-belt system based on an Eulerian approach[J]. Mechanism and Machine Theory, 2018, 128:682-707.
    [20] Passos S, Manin L, Remond D, et al. Investigation on the rotational dynamics of a timing belt drive including an oval driving pulley[J]. Journal of Vibration and Acoustics, 2021, 143(5):1-31.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

胡珑,黄友,周丹,宋朝省,魏长旭.活塞发动机止动轮毂传动系统动态特性分析[J].重庆大学学报,2022,45(8):14-25.

复制
分享
文章指标
  • 点击次数:348
  • 下载次数: 654
  • HTML阅读次数: 768
  • 引用次数: 0
历史
  • 收稿日期:2021-02-25
  • 在线发布日期: 2022-08-19
文章二维码