高温质子交换膜燃料电池催化层孔尺度模拟
作者:
中图分类号:

TK91

基金项目:

国家重点研发计划资助项目(2017YFB0102702);中央高校基本业务自助(2019-JL-015)。


Pore-scale modelling of reconstructed catalyst layer for high-temperature proton-exchange membrane fuel cell
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了研究磷酸在高温质子交换膜燃料电池催化层中再分布对电极性能的影响,使用聚焦离子束电子扫描显微镜对自制的扩散电极成像,重构得到了三维的催化层几何模型;采用多弛豫时间格子玻尔兹曼模型对磷酸在催化层的迁移行为进行仿真,模拟得到递减型和准均匀型2种不同的磷酸分布形式;采用孔尺度模型求解不同条件下的电极传输性质。结果表明在磷酸含量较低时,准均匀型的磷酸分布具有稍优的电化学活性表面积和稍差的氧气和水蒸气有效扩散系数;在磷酸含量较高时,2种分布的电化学活性表面积相似,但是准均匀型分布具有更好的氧气和水蒸气有效扩散系数。

    Abstract:

    To investigate the effect of redistribution of phosphoric acid in the catalytic layer of high-temperature proton-exchange membrane fuel cells on the electrode performance, focused ion beam-scanning electron microscopy was employed to image the in-house gas diffusion electrode, and a three-dimensional model of the catalytic layer was reconstructed. By using multiple relaxation-time-lattice Boltzmann model to simulate the migration and redistribution of phosphoric acid in the catalytic layer, two different phosphoric acid distribution forms (decreasing type and quasi-uniform type) were obtained. Pore-scale modelling was used to examine the electrode transmission properties under different conditions. The results show that when the phosphoric acid content is low, the quasi-uniform phosphoric acid distribution has slightly larger electrochemical active surface area and slightly lower effective diffusion coefficients of oxygen and water vapor. When the content of phosphoric acid is high, the electrochemical active surface areas of the two distribution types are similar, but the quasi-uniform distribution has higher effective diffusion coefficients of oxygen and water vapor.

    参考文献
    [1] Lee D, Lee D G. Carbon composite bipolar plate for high-temperature proton exchange membrane fuel cells (HT-PEMFCs)[J]. Journal of Power Sources, 2016, 327:119-126.
    [2] Kim M, Lim J W, Lee D G. Surface modification of carbon fiber phenolic bipolar plate for the HT-PEMFC with nano-carbon black and carbon felts[J]. Composite Structures, 2015, 119:630-637.
    [3] Oh K, Ju H. Temperature dependence of CO poisoning in high-temperature proton exchange membrane fuel cells with phosphoric acid-doped polybenzimidazole membranes[J]. International Journal of Hydrogen Energy, 2015, 40(24):7743-7753.
    [4] Wagner N, Gülzow E. Change of electrochemical impedance spectra (EIS) with time during CO-poisoning of the Pt-anode in a membrane fuel cell[J]. Journal of Power Sources, 2004, 127(1/2):341-347.
    [5] Krishnan P, Park J S, Kim C S. Performance of a poly(2, 5-benzimidazole) membrane based high temperature PEM fuel cell in the presence of carbon monoxide[J]. Journal of Power Sources, 2006, 159(2):817-823.
    [6] Wagner N, Schulze M. Change of electrochemical impedance spectra during CO poisoning of the Pt and Pt-Ru anodes in a membrane fuel cell (PEFC)[J]. Electrochimica Acta, 2003, 48(25/26):3899-3907.
    [7] Chandan A, Hattenberger M, El-Kharouf A, et al. High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)-[XC半字线.tif,JZ] a review[J]. Journal of Power Sources, 2013, 231:264-278.
    [8] Zhang C Z, Zhou W J, Zhang L, et al. An experimental study on anode water management in high temperature PEM fuel cell[J]. International Journal of Hydrogen Energy, 2015, 40(13):4666-4672.
    [9] Jannelli E, Minutillo M, Perna A. Analyzing microcogeneration systems based on LT-PEMFC and HT-PEMFC by energy balances[J]. Applied Energy, 2013, 108:82-91.
    [10] Chevalier S, Fazeli M, Mack F, et al. Role of the microporous layer in the redistribution of phosphoric acid in high temperature PEM fuel cell gas diffusion electrodes[J]. Electrochimica Acta, 2016, 212:187-194.
    [11] Bevilacqua N, George M G, Bazylak A, et al. Phosphoric acid distribution patterns in high temperature PEM fuel cells[J]. ECS Transactions, 2017, 80(8):409-417.
    [12] Salomov U R, Chiavazzo E, Asinari P. Pore-scale modeling of fluid flow through gas diffusion and catalyst layers for high temperature proton exchange membrane (HT-PEM) fuel cells[J]. Computers & Mathematics with Applications, 2014, 67(2):393-411.
    [13] Salomov U R, Chiavazzo E, Asinari P. Gas-dynamic and electro-chemical optimization of catalyst layers in high temperature polymeric electrolyte membrane fuel cells[J]. International Journal of Hydrogen Energy, 2015, 40(15):5425-5431.
    [14] Salomov U R, Chiavazzo E, Fasano M, et al. Pore- and macro-scale simulations of high temperature proton exchange fuel cells[XC半字线.tif,JZ] HTPEMFC-[XC半字线.tif,JZ] and possible strategies for enhancing durability[J]. International Journal of Hydrogen Energy, 2017, 42(43):26730-26743.
    [15] Silva R A, Hashimoto T, Thompson G E, et al. Characterization of MEA degradation for an open air cathode PEM fuel cell[J]. International Journal of Hydrogen Energy, 2012, 37(8):7299-7308.
    [16] Mack F, Galbiati S, Gogel V, et al. Evaluation of electrolyte additives for high-temperature polymer electrolyte fuel cells[J]. ChemElectroChem, 2016, 3(5):770-773.
    [17] Molaeimanesh G R, Googarchin H S, Moqaddam A Q. Lattice Boltzmann simulation of proton exchange membrane fuel cells-[XC半字线.tif,JZ] a review on opportunities and challenges[J]. International Journal of Hydrogen Energy, 2016, 41(47):22221-22245.
    [18] McCracken M E, Abraham J. Multiple-relaxation-time lattice-Boltzmann model for multiphase flow[J]. Physical Review E, 2005, 71:036701.
    [19] Kendon V M, Cates M E, Pagonabarraga I, et al. Inertial effects in three-dimensional spinodal decomposition of a symmetric binary fluid mixture:a lattice Boltzmann study[J]. Journal of Fluid Mechanics, 2001, 440:147-203.
    [20] Zheng H W, Shu C, Chew Y T. Lattice Boltzmann interface capturing method for incompressible flows[J]. Physical Review E, 2005, 72:056705.
    [21] Mohamad A A. Lattice boltzmann method[M]. London:Springer London, 2011.
    [22] Jacqmin D. Calculation of two-phase navier-stokes flows using phase-field modeling[J]. Journal of Computational Physics, 1999, 155(1):96-127.
    [23] d'[KG-0.5mm] Humières D, Ginzburg I, Krafczyk M, et al. Multiple-relaxation-time lattice Boltzmann models in three dimensions[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2002, 360(1792):437-451.
    [24] Niu X D, Munekata T, Hyodo S A, et al. An investigation of water-gas transport processes in the gas-diffusion-layer of a PEM fuel cell by a multiphase multiple-relaxation-time lattice Boltzmann model[J]. Journal of Power Sources, 2007, 172(2):542-552.
    [25] Lange K J, Sui P C, Djilali N. Determination of effective transport properties in a PEMFC catalyst layer using different reconstruction algorithms[J]. Journal of Power Sources, 2012, 208:354-365.
    相似文献
    引证文献
引用本文

段康俊,Roswitha ZEIS,隋邦傑.高温质子交换膜燃料电池催化层孔尺度模拟[J].重庆大学学报,2022,45(8):34-43.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-01-12
  • 在线发布日期: 2022-08-19
文章二维码