无人驾驶拖拉机实时避障路径规划算法
作者:
中图分类号:

S24

基金项目:

重庆市基础研究与前沿探索项目(cstc2018jcyjAX0409)。


Real-time obstacle avoidance path planning algorithm for unmanned tractors
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了实现无人驾驶拖拉机在直线作业时的实时避障路径规划功能,提出一种在改进最短切线法的基础上用五次多项式函数规划路径的避障路径规划算法。针对最短切线法规划的路径曲率不连续、难跟踪控制的问题,首先采用改进最短切线法求相关坐标点,然后基于求得的坐标点用五次多项式函数求解路径,最后得到由两段五次多项式函数曲线和直线组成的曲率连续的避障路径。对避障路径规划算法进行仿真,结果表明,该算法生成路径长度短、实时性好、安全性高。基于常州东风无人驾驶拖拉机的运动学模型设计一种模型预测控制器,在Simulink与CarSim联合仿真平台上对无人驾驶拖拉机的避障路径规划及跟踪控制进行联合仿真,结果表明:与改进最短切线法相比,基于五次多项式函数的路径规划算法规划的路径跟踪控制精度更高,更易于跟踪控制。

    Abstract:

    In order to realize the real-time obstacle avoidance path planning function of unmanned tractors in straight-line operation, this study proposed an obstacle avoidance path planning algorithm that used a fifth degree polynomial function to plan the path based on the improved shortest tangent method. To solve the problems of discontinuous curvature and difficult tracking control of the path planned by the shortest tangent method, firstly, the improved shortest tangent method was used to find the relevant coordinate points. Based on the obtained coordinate points, the fifth degree polynomial function was then used to solve the path. Finally, an obstacle avoidance path with continuous curvature composed of polynomial function curves and straight lines was obtained. The obstacle avoidance path planning algorithm was simulated. The simulation results show that the path generated by the proposed algorithm has features of short distance, good real-time performance and high security. A model predictive controller was designed based on the kinematics model of the Changzhou Dongfeng unmanned tractor, and the obstacle avoidance path planning and tracking control of the unmanned tractor were jointly simulated on the Simulink and CarSim co-simulation platform. The simulation results show that, compared with the improved shortest tangent method, the path planning algorithm based on the fifth degree polynomial function has higher precision and easier tracking control.

    参考文献
    [1] 李丹丹, 史云, 李会宾, 等. 农业机器人研究进展评述[J]. 中国农业信息, 2018, 30(6):1-17.Li D D, Shi Y, Li H B, et al. Review on the progress of agricultural robot research[J]. China Agricultural Informatics, 2018, 30(6):1-17. (in Chinese)
    [2] 姬长英, 周俊. 农业机械导航技术发展分析[J]. 农业机械学报, 2014, 45(9):44-54.Ji C Y, Zhou J. Current situation of navigation technologies for agricultural machinery[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(9):44-54. (in Chinese)
    [3] 胡静涛, 高雷, 白晓平, 等. 农业机械自动导航技术研究进展[J]. 农业工程学报, 2015, 31(10):1-10.Hu J T, Gao L, Bai X P, et al. Review of research on automatic guidance of agricultural vehicles[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(10):1-10. (in Chinese)
    [4] Gan-Mor S, Clark R L, Upchurch B L. Implement lateral position accuracy under RTK-GPS tractor guidance[J]. Computers and Electronics in Agriculture, 2007, 59(1/2):31-38.
    [5] Kaivosoja J, Linkolehto R. GNSS error simulator for farm machinery navigation development[J]. Computers and Electronics in Agriculture, 2015, 119:166-177.
    [6] 兰玉彬, 王林琳, 张亚莉. 农用无人机避障技术的应用现状及展望[J]. 农业工程学报, 2018, 34(9):104-113.Lan Y B, Wang L L, Zhang Y L. Application and prospect on obstacle avoidance technology for agricultural UAV[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(9):104-113. (in Chinese)
    [7] Eltner A, Schneider D. Analysis of different methods for 3D reconstruction of natural surfaces from parallel-axes UAV images[J]. The Photogrammetric Record, 2015, 30(151):279-299.
    [8] 韩冰, 陈军. 拖拉机行驶路径的多项式设计[J]. 农机化研究, 2006, 28(10):98-99, 106.Han B, Chen J. Autonomous tractor trajectory design using polynomial function[J]. Journal of Agricultural Mechanization Research, 2006, 28(10):98-99, 106. (in Chinese)
    [9] 霍迎辉, 张连明, 杨宜民. 移动机器人路径规划的最短切线路径算法[J]. 广东自动化与信息工程, 2003, 24(1):10-12.Huo Y H, Zhang L M, Yang Y M. The shortest tangent path planning for mobile robot[J]. Guangdong Automation & Information Engineering, 2003, 24(1):10-12. (in Chinese)
    [10] 刘向锋. 面向GPS导航拖拉机的最优全局覆盖路径规划研究[D]. 阜新:辽宁工程技术大学, 2011.Liu X F. Research on optimal global path planning for complete coverage with GPS guidance on tractor[D]. Fuxin:Liaoning Technical University, 2011. (in Chinese)
    [11] 奚小波, 史扬杰, 单翔, 等. 基于Bezier曲线优化的农机自动驾驶避障控制方法[J]. 农业工程学报, 2019, 35(19):82-88.Xi X B, Shi Y J, Shan X, et al. Obstacle avoidance path control method for agricultural machinery automatic driving based on optimized Bezier[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(19):82-88. (in Chinese)
    [12] 郭成洋, 刘美辰, 高泽宁, 等. 基于改进人工势场法的农机避障方法研究[J]. 中国农机化学报, 2020, 41(3):152-157.Guo C Y, Liu M C, Gao Z N, et al. Research on agricultural machinery obstacle avoidance method based on improved artificial potential field method[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(3):152-157. (in Chinese)
    [13] Yao J F, Lin C, Xie X B, et al. Path planning for virtual human motion using improved A* star algorithm[C]//2010 Seventh International Conference on Information Technology:New Generations, April 12-14, 2010, Las Vegas, NV, USA. IEEE, 2010:1154-1158.
    [14] Ge C J, Kasabov N, Liu Z, et al. A spiking neural network model for obstacle avoidance in simulated prosthetic vision[J]. Information Sciences, 2017, 399:30-42.
    [15] Wang M, Liu. Fuzzy logic based robot path planning in unknown environment[C]//2005 International Conference on Machine Learning and Cybernetics, August 18-21, 2005, Guangzhou, China. IEEE, 2005:813-818.
    [16] Oksanen T, Visala A. Coverage path planning algorithms for agricultural field machines[J]. Journal of Field Robotics, 2009, 26(8):651-668.
    [17] 孟志军, 刘卉, 王华, 等. 农田作业机械路径优化方法[J]. 农业机械学报, 2012, 43(6):147-152.Meng Z J, Liu H, Wang H, et al. Optimal path planning for agricultural machinery[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(6):147-152. (in Chinese)
    [18] Ball D, Upcroft B, Wyeth G, et al. Vision-based obstacle detection and navigation for an agricultural robot[J]. Journal of Field Robotics, 2016, 33(8):1107-1130.
    [19] 贾春雪, 罗琦, 龚杨杨. 不规则障碍物的避障路径规划[J]. 计算机科学, 2017, 44(9):290-295.Jia C X, Luo Q, Gong Y Y. Obstacle avoidance path planning for irregular obstacles[J]. Computer Science, 2017, 44(9):290-295. (in Chinese)
    [20] 刘宇峰, 姬长英, 田光兆, 等. 自主导航农业机械避障路径规划[J]. 华南农业大学学报, 2020, 41(2):117-125.Liu Y F, Ji C Y, Tian G Z, et al. Obstacle avoidance path planning for autonomous navigation agricultural machinery[J]. Journal of South China Agricultural University, 2020, 41(2):117-125. (in Chinese)
    [21] 严国军, 贲能军, 顾建华, 等. 基于MPC的无人驾驶拖拉机轨迹跟踪控制[J]. 重庆交通大学学报(自然科学版), 2019, 38(9):1-6.Yan G J, Ben N J, Gu J H, et al. Trajectory tracking control of intelligent tractor based on MPC algorithm[J]. Journal of Chongqing Jiaotong University (Natural Science), 2019, 38(9):1-6. (in Chinese)
    [22] 白国星, 刘立, 孟宇, 等. 基于非线性模型预测控制的农用拖挂车避障控制器研究[J]. 农业机械学报, 2019, 50(4):356-362.Bai G X, Liu L, Meng Y, et al. Study of obstacle avoidance controller of agricultural tractor-trailers based on predictive control of nonlinear model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(4):356-362. (in Chinese)
    [23] 龚建伟, 刘凯, 齐建永. 无人驾驶车辆模型预测控制[M]. 2版. 北京:北京理工大学出版社, 2020.Gong J W, Liu K, Qi J Y. Model predictive control for self-driving vehicles[M]. 2nd ed. Beijing:Beijing Insititute of Technology Press, 2020. (in Chinese)
    [24] Borrelli F, Falcone P, Keviczky T, et al. MPC-based approach to active steering for autonomous vehicle systems[J]. Int J of Vehicle Autonomous Systems, 2005, 3(2/3/4):265-291.
    [25] 李升波, 王建强, 李克强. 软约束线性模型预测控制系统的稳定性方法[J]. 清华大学学报(自然科学版), 2010, 50(11):1848-1852.Li S B, Wang J Q, Li K Q. Stabilization of linear predictive control systems with softening constraints[J]. Journal of Tsinghua University (Science and Technology), 2010, 50(11):1848-1852. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

程越,李川,李鑫,刘永刚,周波波.无人驾驶拖拉机实时避障路径规划算法[J].重庆大学学报,2022,45(8):66-77.

复制
分享
文章指标
  • 点击次数:570
  • 下载次数: 823
  • HTML阅读次数: 942
  • 引用次数: 0
历史
  • 收稿日期:2020-10-16
  • 在线发布日期: 2022-08-19
文章二维码