错列布置下游圆柱尾流驰振特性的数值模拟与荷载分析
作者:
中图分类号:

TM723

基金项目:

国家自然科学基金资助项目(51778097,52178458);重庆市教委科学技术研究项目(KJQN202101521);实验室开放基金资助项目;重庆科技学院科研资助项目(ckrc2020011)。


Numerical simulation on wake galloping of a downstream circular cylinder and aerodynamic forces analysis in staggered arrangement
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    尾流驰振气动荷载在实验中测量较为复杂,利用Fluent数值模拟可以较快得到尾流驰振全过程的气动荷载并加以分析。采用基于2DRANS的SST k-ω非平稳湍流模型,利用ICEM对流域进行结构化网格划分,结合动网格技术以及用户自定义接口编程,将计算结构响应的Newmark-β代码嵌入Fluent软件进行流固耦合数值模拟。假定上游圆柱固定,下游圆柱简化为两自由度的弹簧振子,在流向间距和横向间距为L/D=2、T/D=1,折减风速Vr=6-50,雷诺数Re=2.4×103~2.82×104的范围内,研究了下游圆柱的尾流驰振特性,并将模拟得到的尾流驰振结果与准定常数值计算结果进行对比分析。结果表明,尾流驰振振幅会随着折减风速增加而接近线性增加,Fluent数值模拟结果与已有实验结果吻合较好,验证了SST k-ω湍流模型模拟尾流驰振的可行性;在涡激共振区尾流抑制了下游圆柱表面的随机涡脱;下游圆柱尾流驰振运动轨迹为具有明确方向性和自限性的椭圆环;准定常数值计算方法对涡脱频率和自然频率的高倍频考虑不足,但是2种方法得到的位移时程结果吻合度非常高,自振频率的前四阶倍频的自激力对振动位移响应起主要控制作用,在一定程度上说明尾流驰振是一种自激振动。

    Abstract:

    It is difficult to obtain wake galloping forces in wind tunnel experiments, but it is easy to acquire them by Fluent numerical simulations. In this paper, wake galloping responses of a spring-mounted downstream circular cylinder, with two degree-of-freedom in the wake of a stationary one, were simulated in staggered arrangement at streamwise spacing ratio L/D=2 and cross-stream spacing ratio T/D=1. In combination of structured meshing methods in ICEM and dynamic mesh techniques, the simulation was performed by the proposed unsteady fluid-structure coupling method, which embeds user defined code into Fluent by adopting the unsteady SST k-ω model for the 2D Reynolds-Averaged Navier-stokes (2D RANS) model. The study was carried out with reduced velocities Vr varying from 5 to 60 and Reynolds numbers Re varying from 2.4×103 to 2.82×104. Vibration responses obtained by the proposed unsteady fluid-structure coupling method were validated by experimental data and the aerodynamic forces at Vr=50 were compared to that calculated by the quasi-steady calculation method. Results indicate that the dimensionless amplitude Ay/D increases nearly linearly with the increase of Vr as a typical wake galloping phenomenon. The amplitudes have an excellent agreement with the experimental data. The wake depresses the random vortex shedding of downstream cylinder in vortex-induced resonance region. The trajectory of the downstream cylinder appears like a counterclockwise tilted oval with a clear directivity and self-limitation in the wake galloping region. Additionally, the quasi-steady calculation method has insufficient consideration on higher-order forces and vortex-shedding forces. The displacements obtained by the two methods have an excellent agreement. The self-excitation forces of primary four order frequency multiplication play a major role in controlling the displacement response undergoing wake galloping, indicating that the wake galloping is a kind of self-induced vibration.

    参考文献
    [1] 康庄, 张橙. 雷诺数对圆柱体涡激振动特性影响研究[J]. 华中科技大学学报(自然科学版), 2017, 45(11):74-79.Kang Z, Zhang C. Impact of Reynolds number on vortex-induced vibration performance of cylinder[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45(11):74-79.(in Chinese)
    [2] Morse T L, Govardhan R N, Williamson C H K. The effect of end conditions on the vortex-induced vibration of cylinders[J]. Journal of Fluids and Structures, 2008, 24(8):1227-1239.
    [3] 晏致涛, 王灵芝, 刘军, 等. 表面粗糙度对导线风荷载及涡激振动的影响[J]. 振动与冲击, 2018, 37(7):146-151.Yan Z T, Wang L Z, Liu J, et al. Effects of surface roughness of conductors on their wind loads and vortex-induced vibration[J]. Journal of Vibration and Shock, 2018, 37(7):146-151.(in Chinese)
    [4] 方平治, 顾明. 圆柱两自由度涡激振动的数值模拟研究[J]. 同济大学学报(自然科学版), 2008, 36(3):295-298.Fang P Z, Gu M. Numerical simulation for vortex-induced vibration of circular cylinder with two degree of feedoms[J]. Journal of Tongji University (Natural Science), 2008, 36(3):295-298.(in Chinese)
    [5] Khalak A, Williamson C H K. Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping[J]. Journal of Fluids and Structures, 1999, 13(7/8):813-851.
    [6] Assi G R S, Bearman P W, Meneghini J R. On the wake-induced vibration of tandem circular cylinders:the vortex interaction excitation mechanism[J]. Journal of Fluid Mechanics, 2010, 661:365-401.
    [7] Assi G R S, Bearman P W, Carmo B S, et al. The role of wake stiffness on the wake-induced vibration of the downstream cylinder of a tandem pair[J]. Journal of Fluid Mechanics, 2013, 718:210-245.
    [8] Assi G R S. Wake-induced vibration of tandem and staggered cylinders with two degrees of freedom[J]. Journal of Fluids and Structures, 2014, 50:340-357.
    [9] Brika D, Laneville A. The flow interaction between a stationary cylinder and a downstream flexible cylinder[J]. Journal of Fluids and Structures, 1999, 13(5):579-606.
    [10] King R, Johns D J. Wake interaction experiments with two flexible circular cylinders in flowing water[J]. Journal of Sound and Vibration, 1976, 45(2):259-283.
    [11] Hover F S, Triantafyllou M S. Galloping response of a cylinder with upstream wake interference[J]. Journal of Fluids and Structures, 2001, 15(3/4):503-512.
    [12] Tokoro S, Komatsu H, Nakasu M, et al. A study on wake-galloping employing full aeroelastic twin cable model[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 88(2/3):247-261.
    [13] Zdravkovich M M. Review of interference-induced oscillations in flow past two parallel circular cylinders in various arrangements[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1988, 28(1/2/3):183-199.
    [14] 方平治, 顾明, 谈建国, 等. 阻塞率对表面风压系数影响的数值模拟[J]. 建筑科学与工程学报, 2013, 30(3):101-106.Fang P Z, Gu M, Tan J G, et al. Numerical simulation of effect of blockage ratio on facade pressure coefficient[J]. Journal of Architecture and Civil Engineering, 2013, 30(3):101-106.(in Chinese)
    [15] Wu W S, Huang S, Barltrop N. Current induced instability of two circular cylinders[J]. Applied Ocean Research, 2002, 24(5):287-297.
    [16] 肖春云. 大跨度柔性桥梁双索股尾流驰振机理研究[D]. 长沙:湖南大学, 2016.Xiao C Y. The research on mechanism of double strands wake galloping of the long-span flexible bridge[D]. Changsha:Hunan University, 2016. (in Chinese)
    [17] Sockel H, Watzinger J. Vibrations of two circular cylinders due to wind-excited interference effects[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 74/75/76:1029-1036.
    [18] Qin B, Alam M M, Zhou Y. Free vibrations of two tandem elastically mounted cylinders in crossflow[J]. Journal of Fluid Mechanics, 2019, 861:349-381.
    [19] Wu W B, Wang J S. Numerical simulation of VIV for a circular cylinder with a downstream control rod at low Reynolds number[J]. European Journal of Mechanics-B/Fluids, 2018, 68:153-166.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

傅亨仁,王灵芝,晏致涛,孙毅.错列布置下游圆柱尾流驰振特性的数值模拟与荷载分析[J].重庆大学学报,2022,45(9):73-82.

复制
分享
文章指标
  • 点击次数:414
  • 下载次数: 640
  • HTML阅读次数: 560
  • 引用次数: 0
历史
  • 收稿日期:2021-12-05
  • 在线发布日期: 2022-10-10
文章二维码