基于摆线滚轮阴模基体的步长伸缩双圆弧插补算法
作者:
中图分类号:

TG580

基金项目:

国家重点研发计划资助项目(2017YFB1300704);重庆市自然科学基金资助项目(cstc2018jcyjAX0301)。


Variable-step double-arc interpolation algorithm based on cycloid roller female mold matrix
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    阴模基体加工精度是影响摆线金刚石滚轮制造精度的关键因素。为了提高摆线滚轮阴模基体在数控机床上的加工精度,首先求解出摆线滚轮阴模基体形面曲线方程,然后基于双圆弧插补法,建立摆线滚轮阴模基体步长伸缩双圆弧插补数学模型,利用数值分析方法求解插补节点数据,控制步长伸缩以调整插补误差。通过计算实例验证了算法的可行性,结果表明:双圆弧插补误差小于0.01 μm,比直线插补误差降低75%;控制步长伸缩,在相同允差下拟合圆弧段数减少55%,提高了加工效率;插补数据拟合的加工仿真曲线光滑平整,刀具路径具备G1连续性。

    Abstract:

    The machining accuracy of the female mold matrix is a key factor affecting the manufacturing accuracy of the cycloid diamond roller. In order to improve the machining accuracy of the cycloidal roller female mold on the CNC (computer numerical control) machine tool, firstly, the basic curve equation of the cycloidal roller female mold is solved. Then, based on the double arc interpolation method, a mathematical model of the variable-step double-arc interpolation of the cycloidal roller female mold is established. The interpolation node data are obtained by using numerical analysis method, and the interpolation error can be adjusted by controlling the step length expansion. The feasibility of the algorithm is verified by calculation examples. The results show that the double-arc interpolation error is less than 0.01 μm, which is 75% lower than the linear interpolation error. By controlling the step length expansion, the number of fitting arc segments is reduced by 55% under the same tolerance, and the processing efficiency is improved. Moreover, the machining simulation curve fitted by the interpolation data is smooth and flat, and the tool path has G1 continuity.

    参考文献
    [1] Pham A D, Ahn H J. High precision reducers for industrial robots driving 4th industrial revolution:state of arts, analysis, design, performance evaluation and perspective[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2018, 5(4):519-533.
    [2] Wang H, Shi Z Y, Yu B, et al. Transmission performance analysis of RV reducers influenced by profile modification and load[J]. Applied Sciences, 2019, 9(19):4099.
    [3] 张也,李朝阳,黄健.多因素综合作用的摆线针轮传动误差分析[J].重庆大学学报, 2020, 43(12):1-12. Zhang Y, Li C Y, Huang J. Transmission error analysis of cycloidal pinwheel based on multi-factor comprehensive effect[J]. Journal of Chongqing University, 2020, 43(12):1-12.(in Chinese)
    [4] 张跃明,杨申春,纪姝婷,等. RV减速器摆线轮磨削工艺研究[J].机床与液压, 2018, 46(15):28-31,36. Zhang Y M, Yang S C, Ji S T, et al. Grinding technology research of RV reducer cycloid gear[J]. Machine Tool&Hydraulics, 2018, 46(15):28-31,36.(in Chinese)
    [5] 张德泉,李真,曹克伟,等.摆线轮齿廓曲线CNC成形磨削机理[J].天津大学学报, 1998, 31(4):71-75. Zhang D Q, Li Z, Cao K W, et al. Study on the CNC profiling gear grinding method of epicycloidal gear[J]. Journal of Tianjin University, 1998, 31(4):71-75.(in Chinese)
    [6] Cui Z M, Liu Z R, Zhang H Y. Manufacturing technique of high precision intricate diamond dressing roller[J]. Materials Science Forum, 2006, 532-533:492-495.
    [7] 杨摩西,崔仲鸣,赫青山,等.轴承滚道磨削中金刚石滚轮修整技术的应用[J].轴承, 2019(3):15-19. Yang M X, Cui Z M, He Q S, et al. Application of diamond roller dressing technology in grinding of bearing raceway[J]. Bearing, 2019(3):15-19.(in Chinese)
    [8] Wu M L, Ren C Z, Zhang K F. ELID groove grinding of ball-bearing raceway and the accuracy durability of the grinding wheel[J]. The International Journal of Advanced Manufacturing Technology, 2015, 79(9/10/11/12):1721-1731.
    [9] Yang J X, Ai W, Liu Y X, et al. Kinematics model and trajectory interpolation algorithm for CNC turning of non-circular profiles[J]. Precision Engineering, 2018, 54:212-221.
    [10] 张敬东.摆线齿轮的数控加工[J].现代制造工程, 2005(3):49-50. Zhang J D. Numerical control machining of hypocycloidal gears[J]. Machinery Manufacturing Engineer, 2005(3):49-50.(in Chinese)
    [11] 姚必强,姚进.数控加工曲线的等弧长圆弧拟合方法[J].四川大学学报(工程科学版), 2008, 40(1):171-174. Yao B Q, Yao J. The method of curve fitting with equal length arc used for NC processing[J]. Journal of Sichuan University (Engineering Science Edition), 2008, 40(1):171-174.(in Chinese)
    [12] Ji S J, Lei L G, Zhao J, et al. An adaptive real-time NURBS curve interpolation for 4-axis polishing machine tool[J]. Robotics and Computer-Integrated Manufacturing, 2021, 67:102025.
    [13] Knez M, Žagar E. Interpolation of circular arcs by parametric polynomials of maximal geometric smoothness[J]. Computer Aided Geometric Design, 2018, 63:66-77.
    [14] Wu Z X, Liu T. A double circular arc fitting algorithm for CNC machining of non-uniform scroll components[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(9/10/11/12):4485-4495.
    [15] 刘涛,李亚军.三段基圆渐开线涡旋型线的双圆弧插值算法拟合与加工[J].现代制造工程, 2018(8):109-114. Liu T, Li Y J. Fitting and processing of double circular arc interpolation algorithm for three section base circle involute profile[J]. Modern Manufacturing Engineering, 2018(8):109-114.(in Chinese)
    [16] 孙永吉,刘涛,唐林虎,等.立铣变截面涡旋齿组合型线的插补研究[J].化工机械, 2019, 46(1):35-40. Sun Y J, Liu T, Tang L H, et al. Study of profiles of variable cross-section scroll interpolation for end milling[J]. Chemical Engineering&Machinery, 2019, 46(1):35-40.(in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

肖向,黄健,陈佳豪,陈兵奎.基于摆线滚轮阴模基体的步长伸缩双圆弧插补算法[J].重庆大学学报,2022,45(10):77-85.

复制
分享
文章指标
  • 点击次数:282
  • 下载次数: 689
  • HTML阅读次数: 1075
  • 引用次数: 0
历史
  • 收稿日期:2021-01-30
  • 最后修改日期:2021-06-04
  • 在线发布日期: 2022-11-01
文章二维码