基于多源信息融合和ADCNN的离心鼓风机故障诊断
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH17

基金项目:

国家自然科学基金资助项目(51975075);重庆市技术创新与应用示范专项资助项目(cstc2018jszx-cyzdX0146)。


Fault diagnosis of centrifugal blowers based on multi-source information fusion and ADCNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对离心鼓风机故障识别过程中单一传感器信号故障信息有限,传统的卷积神经网络(CNN)在处理多源高维数据时特征提取能力不足的问题,提出一种基于多源信息融合和自适应深度卷积神经网络(ADCNN)的离心鼓风机故障诊断方法。首先,基于相关性方差贡献率法实现离心鼓风机多源同类信息的数据层融合,建立多源信息融合框架;然后,利用ADCNN自适应地提取各异类信息的特征并完成特征融合,建立融合多源信息的ADCNN故障诊断模型;最后,将此方法应用于离心鼓风机转子故障诊断上,并与传统的融合模式以及CNN、反向传播神经网络(BPNN)、支持向量机(SVM)方法进行对比,试验结果表明:提出的方法在诊断精度与鲁棒性上均优于其他方法。

    Abstract:

    The fault information of the single sensor signal is limited in the process of centrifugal blower fault recognition, and the traditional convolutional neural network (CNN) has poor feature extraction abilities when processing multi-source high-dimensional data. To address these problems, this paper proposes a fault diagnosis method based on multi-source information fusion and adaptive deep convolutional neural network (ADCNN) for centrifugal blowers. Firstly, data-level fusion of multi-source homogeneous information of the centrifugal blower is realized based on correlation variance contribution rate method, and a multi-source information fusion framework is established. Then, ADCNN is used to adaptively extract the features of heterogeneous information and complete feature fusion, and an ADCNN fault diagnosis model that integrates multi-source information is constructed. Finally, the proposed method is applied to the fault diagnosis of the centrifugal blower rotor and compared with the traditional fusion method, as well as CNN, BPNN, and SVM. The experiment results show that the proposed method has superior diagnosis accuracy and robustness than other methods.

    参考文献
    相似文献
    引证文献
引用本文

张友,李聪波,林利红,王睿.基于多源信息融合和ADCNN的离心鼓风机故障诊断[J].重庆大学学报,2022,45(10):86-96.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-01-05
  • 最后修改日期:2021-04-25
  • 录用日期:
  • 在线发布日期: 2022-11-01
  • 出版日期:
文章二维码