前后独立驱动电动汽车转矩分配与驱动防滑协调控制
作者:
中图分类号:

U469.7

基金项目:

国家重点研发计划项目(2018YFB0106100)。


Coordinated control of torque distribution and acceleration slip regulation for front- and rear-independent-drive electric vehicles
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了提升前后独立驱动四驱电动汽车的综合性能,提出了一种集成前后轴转矩分配和驱动防滑功能的协调控制策略(coordinated control strategy, CCS)。分别设计了基于经济性最优的前后轴转矩分配控制器和基于滑模控制理论的驱动防滑控制器。在此基础上,设计了集成两种控制器工作效能的协调控制策略。与已有集成控制策略不同,提出的策略不是将转矩分配与驱动防滑两种控制功能简单组合,而是在综合考虑车辆的安全性、经济性和动力性条件下进行合理且有效的集成。在常规工况下,车辆默认遵循经济性原则,同时控制器实时监测各车轮的滑移率。当路面条件恶化、无法满足经济性行驶时,在保证安全性的前提下,进行适当的转矩补偿,最大限度地利用路面附着条件,尽可能保障车辆的动力性不受影响。在MATLAB/CarSim环境下对提出的协调控制策略进行仿真验证的结果表明,在加速踏板开度分别为10%、30%、50%时,与传统集成控制策略(traditional integrated control strategy, TICS)相比,所提出的CCS使车辆的动力性能分别提升15.3%、35.6%、4.5%。

    Abstract:

    In order to improve the overall performance of front- and rear-independent-drive electric vehicles, a coordinated control strategy (CCS) is proposed to integrate the control actions of front-rear torque distribution controller and acceleration slip regulation controller. Firstly, an economy-oriented torque distribution controller and an acceleration slip regulation controller based on sliding mode control theory are designed. Then, a coordinated control strategy integrating the effects of the two controllers is proposed. Different from the existing integrated control strategies, instead of a simple combination of front-rear torque distribution and acceleration slip regulation control, the proposed strategy is a reasonable and effective integration which takes into consideration of vehicle safety, economy and dynamic performance. Under normal driving conditions, the vehicle operates in an economic mode by default, and the proposed CCS monitors the slip ratio of each wheel in real time. When the road condition deteriorates and economic driving cannot be sustained, appropriate torque compensation is applied without jeopardizing vehicle safety. By this means, road adhesion is made full use of and vehicle dynamic performance is optimized. Finally, the proposed CCS is verified through simulation studies in the MATLAB/CarSim environment. The simulation results show that when the opening of the accelerator pedal is 10%, 30% and 50%, the proposed CCS improves the vehicle dynamic performance by 15.3%, 35.6% and 4.5%, respectively, compared to traditional integrated control strategy (TICS).

    参考文献
    [1] 余卓平,冯源,熊璐.分布式驱动电动汽车动力学控制发展现状综述[J].机械工程学报, 2013, 49(8):105-114.Yu Z P, Feng Y, Xiong L. Review on vehicle dynamics control of distributed drive electric vehicle[J]. Journal of Mechanical Engineering, 2013, 49(8):105-114.(in Chinese)
    [2] Wang R R, Wang J M. Fault-tolerant control with active fault diagnosis for four-wheel independently driven electric ground vehicles[J]. IEEE Transactions on Vehicular Technology, 2011, 60(9):4276-4287.
    [3] Esmailzadeh E, Goodarzi A, Vossoughi G R. Optimal yaw moment control law for improved vehicle handling[J]. Mechatronics, 2003, 13(7):659-675.
    [4] Sakai S, Sado H, Hori Y. Motion control in an electric vehicle with four independently driven in-wheel motors[J]. IEEE/ASME Transactions on Mechatronics, 1999, 4(1):9-16.
    [5] 徐坤,骆媛媛,杨影,等.分布式电驱动车辆状态感知与控制研究综述[J].机械工程学报, 2019, 55(22):60-79.Xu K, Luo Y Y, Yang Y, et al. Review on state perception and control for distributed drive electric vehicles[J]. Journal of Mechanical Engineering, 2019, 55(22):60-79.(in Chinese)
    [6] Mutoh N, Hayano Y, Yahagi H, et al. Electric braking control methods for electric vehicles with independently driven front and rear wheels[J]. IEEE Transactions on Industrial Electronics, 2007, 54(2):1168-1176.
    [7] Mutoh N. Driving and braking torque distribution methods for front-and rear-wheel-independent drive-type electric vehicles on roads with low friction coefficient[J]. IEEE Transactions on Industrial Electronics, 2012, 59(10):3919-3933.
    [8] 褚文博,罗禹贡,赵峰,等.分布式驱动电动汽车驱动转矩协调控制[J].汽车工程, 2012, 34(3):185-189,196.Chu W B, Luo Y G, Zhao F, et al. Driving torque coordination control of distributed drive electric vehicles[J]. Automotive Engineering, 2012, 34(3):185-189,196.(in Chinese)
    [9] Yuan X B, Wang J B. Torque distribution strategy for a front-and rear-wheel-driven electric vehicle[J]. IEEE Transactions on Vehicular Technology, 2012, 61(8):3365-3374.
    [10] Fujimoto H, Sumiya H. Range extension control system of electric vehicle based on optimal torque distribution and cornering resistance minimization[C]//IECON 2011-37th Annual Conference of the IEEE Industrial Electronics Society, November 7-10, 2011, Melbourne, VIC, Australia. IEEE, 2011:3858-3863.
    [11] 乔帅鹏,胡明辉,曹开斌,等.多轴电驱动车辆驱动力优化分配策略[J/OL].重庆大学学报:1-12[2021-03-05]. http://kns.cnki.net/kcms/detail/50.1044.N.20200430.2039.005.html. Qiao S P, Hu M H, Cao K B, et al. Optimal driving force distribution strategy for multi-axle electric vehicles[J/OL]. Journal of Chongqing University:1-12[2021-03-05]. http://kns.cnki.net/kcms/detail/50.1044.N.20200430.2039.005.html. (in Chinese)
    [12] 范晶晶,罗禹贡,张弦,等.多轴独立电驱动车辆驱动力的协调控制[J].清华大学学报(自然科学版), 2011, 51(4):478-481.Fan J J, Luo Y G, Zhang X, et al. Coordinated control of driving torque for multi-axles independent driving vehicles[J]. Journal of Tsinghua University (Science and Technology), 2011, 51(4):478-481.(in Chinese)
    [13] Tong Q, Guo H Q, He H W, et al. Torque distribution control strategy for electric vehicles with axles separately driven[C]//Proceedings of the 2nd International Conference on Electronic and Mechanical Engineering and Information Technology (EMEIT-2012), September 26-28, 2012. Paris:Atlantis Press, 2012:1646-1652.
    [14] He H W, Peng J K, Xiong R, et al. An acceleration slip regulation strategy for four-wheel drive electric vehicles based on sliding mode control[J]. Energies, 2014, 7(6):3748-3763.
    [15] Zhang X D, G hlich D. Integrated traction control strategy for distributed drive electric vehicles with improvement of economy and longitudinal driving stability[J]. Energies, 2017, 10(1):126.
    [16] 余卓平,张立军,熊璐.四驱电动车经济性改善的最优转矩分配控制[J].同济大学学报(自然科学版), 2005, 33(10):79-85.Yu Z P, Zhang L J, Xiong L. Optimized torque distribution control to achieve higher fuel economy of 4WD electric vehicle with four in-wheel motors[J]. Journal of Tongji University, 2005, 33(10):79-85.(in Chinese)
    [17] 李雪栋,贺林,叶炜,等.电动汽车TCS滑模控制器设计[J].计算机仿真, 2020, 37(2):144-148,230. Li X D, He L, Ye W, et al. Design of the sliding mode controller of TCS for electric vehicle[J]. Computer Simulation, 2020, 37(2):144-148,230.(in Chinese)
    [18] Tan G X, Liu M, Lin C, et al. Design and simulation of fuzzy PID driver model[C]//2015 IEEE International Conference on Communication Problem-Solving (ICCP), October 16-18, 2015, Guilin, China. IEEE, 2015:436-439.
    [19] 吴松松,郑燕萍,杜政平,等.基于模糊PID控制理论的驾驶员模型的建立[J].公路与汽运, 2012(4):14-16.Wu S S, Zheng Y P, Du Z P, et al. The establishment of driver model based on fuzzy PID control theory[J]. Highways&Automotive Applications, 2012(4):14-16.(in Chinese)
    [20] Hu M H, Zeng J F, Xu S Z, et al. Efficiency study of a dual-motor coupling EV powertrain[J]. IEEE Transactions on Vehicular Technology, 2015, 64(6):2252-2260.
    [21] 唐小林,李珊珊,王红,等.网联环境下基于分层式模型预测控制的车队能量控制策略研究[J].机械工程学报, 2020, 56(14):119-128.Tang X L, Li S S, Wang H, et al. Research on energy control strategy based on hierarchical model predictive control in connected environment[J]. Journal of Mechanical Engineering, 2020, 56(14):119-128.(in Chinese)
    [22] Zhang X D, Ghlich D, Wu X L. Optimal torque distribution strategy for a four motorized wheels electric vehicle[C]//EVS28 International Electric Vehicle Symposium and Exhibition, May 3-6, 2015, Seoul. Korean Society of Automotive Engineers, 2015:1-6.
    [23] 乔帅鹏.基于关键部件效率特性的双电机四驱纯电动汽车转矩优化分配策略[D].重庆:重庆大学, 2020.Qiao S P. Optimal torque distribution strategy of dual-motor four-wheel-drive pure electric vehicle based on the efficiency characteristics of key components[D]. Chongqing:Chongqing University, 2020.(in Chinese)
    [24] 潘宏伟.基于多约束的前后轴独立驱动四驱电动汽车驱动转矩分配控制策略研究[D].重庆:重庆大学, 2020.Pan H W. The torque distribution control of front-and-rear independent drive 4wd electric vehicle based on multi-driving-restraints[D]. Chongqing:Chongqing University, 2020.(in Chinese)
    [25] 陈浩,袁良信,郑四发,等.基于能耗优化的电动轮汽车转矩动态分配[J].清华大学学报(自然科学版), 2020, 60(2):132-138.Chen H, Yuan L X, Zheng S F, et al. Dynamic torque allocation for in-wheel motor driven vehicle based on energy consumption optimization[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(2):132-138.(in Chinese)
    [26] Cao K B, Hu M H, Wang D Y, et al. All-wheel-drive torque distribution strategy for electric vehicle optimal efficiency considering tire slip[J]. IEEE Access, 2021, 9:25245-25257.
    [27] 苏建强,马晓军,许世蒙,等.多轮电驱动装甲车辆车轮防滑控制[J].汽车工程, 2014, 36(5):592-596. Su J Q, Ma X J, Xu S M, et al. Anti-slip control of armored vehicle with multi-in-wheel motors drive[J]. Automotive Engineering, 2014, 36(5):592-596.(in Chinese)
    [28] Xia X, Xiong L, Sun K, et al. Estimation of maximum road friction coefficient based on Lyapunov method[J]. International Journal of Automotive Technology, 2016, 17(6):991-1002.
    [29] 赵亚超.基于滑移率估计的电动轮车驱动防滑控制策略的研究[D].武汉:武汉理工大学, 2014.Zhao Y C. Research onanti-slip regulation of in-wheel motor driven electric vehicle[D]. Wuhan:Wuhan University of Technology, 2014.(in Chinese)
    [30] Chern T L, Wu Y C. Design of integral variable structure controller and application to electrohydraulic velocity servosystems[J]. IEE Proceedings D Control Theory and Applications, 1991, 138(5):439.
    [31] 李鹏,郑志强.非线性积分滑模控制方法[J].控制理论与应用, 2011, 28(3):421-426.Li P, Zheng Z Q. Sliding mode control approach with nonlinear integrator[J]. Control Theory&Applications, 2011, 28(3):421-426.(in Chinese)
    [32] 邓茹月.四轮独立驱动电动汽车纵向动力学控制研究[D].武汉:武汉理工大学, 2019.Deng R Y. Research on longitudinal dynamics control of four-wheel independent drive electric vehicle[D]. Wuhan:Wuhan University of Technology, 2019.(in Chinese)
    [33] Fu C Y, Hoseinnezhad R, Li K N, et al. A novel adaptive sliding mode control approach for electric vehicle direct yaw-moment control[J]. Advances in Mechanical Engineering, 2018, 10(10):168781401880317.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郭聪,傅春耘,翟钧,曹开斌,罗荣华,刘洋,潘宏伟,乔帅鹏.前后独立驱动电动汽车转矩分配与驱动防滑协调控制[J].重庆大学学报,2022,45(10):97-112.

复制
分享
文章指标
  • 点击次数:428
  • 下载次数: 691
  • HTML阅读次数: 606
  • 引用次数: 0
历史
  • 收稿日期:2021-05-13
  • 最后修改日期:2021-06-24
  • 在线发布日期: 2022-11-01
文章二维码