摘要:针对非支配排序遗传算法 (NSGA-II, non-dominated sorting genetic algorithm II)在求解柔性作业车间多目标优化调度问题中多样性不足、易于早熟与局部收敛的缺点,提出一种基于强化学习的改进NSGA-II算法(RLNSGA-II, reinforcement learning non-dominated sorting genetic algorithm II)。为避免NSGA-II陷入局部收敛问题引入双种群进化策略,利用性别判定法将种群拆分为两个种群,并在进化过程中采用不同的交叉变异算子,增加算法的局部和全局搜索能力;为解决NSGA-II精英策略造成多样性不足的问题,融合多个多样性度量指标,利用强化学习动态优化种群迭代过程中的拆分比例参数以保持多样性,改善算法收敛性能。最后通过Kacem标准算例进行了仿真实验与性能分析,验证了RLNSGA-II的有效性与优越性。