凹凸边界形状热弹性问题的自适应无网格法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

O343.1

基金项目:

国家自然科学基金资助项目(11872133)。


Adaptive meshless method for thermoelastic problems with concave convex boundary
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决具有凹凸边界形状的平面非定常拟静态热力耦合问题,采用无网格伽辽金算法(EFG)进行求解,使用移动最小二乘法构造形函数及拉格朗日乘子法处理本质边界条件(第一类边界条件),通过引入Voronoi邻接准则和后验误差式,对后续结果进行自适应优化;构建了一种新的适用于非定常拟静态热力耦合问题的EFG法自适应计算模型。为了验证计算模型的可行性,分别计算在二维混合边界条件下光滑与凹凸边界形状平面的温度场以及位移场的分布,并与有限单元法的计算结果进行对比,表征了有限单元法和无网格法计算结果的差异,验证了非定常拟静态热力耦合问题的EFG法计算模型的有效性和精确性。

    Abstract:

    In order to solve the plane unsteady and quasi-static coupled thermoelasticity problems with concave convex boundary shape, the element free Galerkin method (EFG) is used. The subsequent results are adaptively optimized by using the moving least square method (MLS) to construct the shape function and the Lagrange multiplier method to deal with the essential boundary conditions (the first kind of boundary conditions), as well as introducing the Voronoi adjacency criterion and the posteriori error formula. Then a new EFG adaptive model for unsteady quasi-static and coupled thermoelasticity problems is constructed. To verify the model’s feasibility, the temperature field and displacement field distribution in the planes with smooth and concave convex boundary shape are calculated under two-dimensional mixed boundary conditions. The results are compared with those of finite element method. The difference between the results of finite element method and meshless method is characterized, and the effectiveness and accuracy of EFG for unsteady quasi-static thermoelasticity coupled problems are verified.

    参考文献
    相似文献
    引证文献
引用本文

杨澜,蹇开林,张亮.凹凸边界形状热弹性问题的自适应无网格法[J].重庆大学学报,2022,45(12):36-47.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-01-31
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-01-09
  • 出版日期:
文章二维码