含椭球夹杂体的异质结构全空间弹性场
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(11702041);重庆市自然科学基金(cstc2020jcyj-msxmX0097);中央高校基本科研业务费(2020CDJ-LHSS-005)。


Full space elastic field of heterogeneous structures with an ellipsoidal inhomogeneity
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    异质结构半导体材料通常比均质半导体材料具有更优异的性能,但嵌入的夹杂体因晶格失配或热膨胀而产生的本征应变会对材料整体性能产生严重的影响。因此有必要对非均质夹杂体对异质结构的全空间弹性场的影响进行研究。根据Eshelby经典夹杂理论,综合考虑实际半导体材料的各向异性和非均质性,基于等效夹杂法和格林函数法建立了含椭球夹杂体的异质结构解析模型。为求解该模型,通过傅里叶变换和逆变换推导格林函数及其导数在实空间的精确数值积分,从而得到全空间弹性场的数值积分表达式,并与文献和有限元结果对比验证了模型的正确性并说明了材料各向异性假设的必要性。利用所建模型重点分析了非均质夹杂体的形状和材料参数对全空间应变场的影响。结果表明,非均质夹杂体的形状变化会使内部弹性场由平面应力状态转变为平面应变状态,且影响界面附近的应变大小和衰减程度。本征应变仅包含正应变分量时,最终弹性场不随具有正交或更高对称性晶体结构的夹杂体剪切弹性常数变化,而只和拉伸弹性常数有关,且整体变化趋势与夹杂体的拉压弹性常数变化趋势一致。

    Abstract:

    Heterogeneous semiconductors usually have better performance than homogeneous semiconductors, but the eigenstrain caused by lattice mismatch or thermal expansion of the embedded inhomogeneity has a serious impact on the overall performance of the material. Therefore, it is necessary to study the effect of inhomogeneity on the full space elastic field of heterogeneous structures. According to the classical inclusion theory of Eshelby and considering the anisotropy and heterogeneity of practical semiconductor materials, an analytical model of heterogeneous structure with an ellipsoidal inhomogeneity is established based on the equivalent inclusion method and Green’s function method. In order to solve the model, the exact numerical integration of Green’s function and its derivatives in real space are derived by Fourier transform and inverse transformation, and the numerical integration expression of the elastic field in full space is obtained. The comparison of the results obtained by the proposed model with those by the finite element method and those reported in literature verifies the correctness of the model and shows the necessity of the anisotropy hypothesis. The results show that the shape change of heterogeneous inclusions changes the internal elastic field from the plane stress state to the plane strain state, and affects the strain magnitude and attenuation degree near the interface. Interestingly, when the eigenstrain only contains normal components, the final elastic field does not change with shear elastic constants of the inhomogeneity with orthotropic or higher symmetry, but it is only related to tensile elastic constants with the same changing trend.

    参考文献
    相似文献
    引证文献
引用本文

何君雄,叶伟.含椭球夹杂体的异质结构全空间弹性场[J].重庆大学学报,2022,45(12):82-93.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-03-25
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-01-09
  • 出版日期:
文章二维码