高强高模PVA/CNF/GO复合纤维的制备与性能研究
作者:
中图分类号:

TB332

基金项目:

国家自然科学基金项目(U1864208)。


Research on preparation and properties of high strength and high modulus PVA/CNF/GO composite fiber
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    采用湿法纺丝和热拉伸工艺制备了高强度高模量的PVA/CNF/GO复合纤维,研究了纳米纤维素(CNF)和氧化石墨烯(GO)对聚乙烯醇(PVA)纤维的增强作用,探讨了CNF含量和热拉伸温度对纤维拉伸性能的影响。当CNF的含量为6%,GO的含量为1%时,湿法纺制的PVA/CNF/GO复合纤维在160℃经过3倍的热拉伸处理后具有优异的拉伸性能,其极限抗拉强度为(1.09±0.11)GPa,弹性模量为(21.87±3.03)GPa,比纯PVA纤维分别提高了45%和63%,比未热拉伸处理的PVA/CNF/GO复合纤维分别提高了523%和271%。同时,该复合纤维具有良好的生物相容性和潜在的生物应用价值,可作为手术缝合线,提供组织再生时所需的适当张力。

    Abstract:

    A high-strength and high-modulus PVA/CNF/GO composite fiber was prepared by wet spinning and hot drawing process. The reinforcement effect of cellulose nanofibrils (CNF) and graphene oxide (GO) on polyvinyl alcohol (PVA) fiber was studied, and the effects of CNF content and hot drawing temperature on the tensile properties of fibers were discussed. When the content of CNF is 6% and the content of GO is 1%, the PVA/CNF/GO composite fiber prepared by wet spinning has excellent tensile properties after three times of hot stretching treatment at 160 ℃. Its ultimate tensile strength and elastic modulus are (1.09±0.11) GPa and (21.87±3.03) GPa, respectively, which are 45% and 63% higher than those of pure PVA fiber, and 523% and 271% higher than those of PVA/CNF/GO composite fiber without hot stretching treatment. Meanwhile, the prepared composite fiber shows good biocompatibility. It can be used as surgical sutures to provide appropriate tension for tissue regeneration, demonstrating potential biological application value.

    参考文献
    [1] 李文兵,魏婉婷,李金嵘,等.形状记忆聚合物纤维及增强复合材料的研究进展[J].复合材料学报,2022,39(1):77-96. Li W B, Wei W T, LiJ R, et al. Research progress of shape memory polymer fibers and reinforced composites[J]. Acta Materiae Compositae Sinica, 2022, 39(1):77-96.(in Chinese)
    [2] 马亮,时学娟,张笑笑,等.可控核/壳绪构聚合物电纺纤维的制备与应用DJ].化学进展,2019, 31(9):1213-1220. Ma L, Shi XJ, Zhang X X, et al. Preparation of the controllable core-shell structured eletrospun polymer fibers and their application[J]. Progress in Chemistry, 2019, 31(9); 1213-1220.(in Chinese)
    [3] HongXQ, ZouL M. Zhao J X, et al. Dry-wet spinning of PVA fiber with high strength and high Young's modulus[J]. I0P Conference Series:Materials Science and Engineering, 2018, 439; 042011.
    [4] 阚黎黎,章志,张利,等.低成本PVA纤维对超高韧性水泥基复合材料力学性能的影响[J].工程力学,2019,36(11):121-129,182. KanL L, Zhang Z, Zhang L, et al Efect of low-cost PVA fibers on the mechanical properties of engineered cementitious composites[J]. Engineering Mechanics, 2019, 36(11):121-129,182.(in Chinese)
    [5] LuH w,Zou L M, Xu Y J, et al. Preparation and study of poly vinyI alcohol/hyperbranched polylysine fluorescence fibers via wet spinning[J]. Materials Research Express, 2018, 5(2):025102.
    [6] Gao Q, Wang M X, Kang X Y, et al. Continuous wet-spinning of flxible and water-stable conductive PEDOT:PSS/PVA composite fibers for wearable sensors[J]. Composites Communications, 2020, 17:134-140.
    [7] Kang D, Shin Y E, Jo H J, et al. Mechanical properties of poly(dopamine)-coated graphene oxide and poly(vinyl alcohol) composite fibers coated with reduced graphene oxide and their use for piezoresistive sensing[J]. Particle & Particle Systems Characterization, 2017, 34(9):1600382.
    [8] Biranje s, Madiwale P, Adivarekar R V. Porous electrospun casein/PVA nanofibrous mat for its potential application as wound dressing material[J]. Journal of Porous Materials, 2019, 26(1); 29-40.
    [9] WangS Y, Yan F, Ren P, et al. Incorporation of metal-organic frameworks into electrospun chitosan/poly (vinyl alcohol) nanofibrous membrane with enhanced antibacterial activity for wound dressing application[J]. International Journal of Biological Macromolecules, 2020, 158:9-17.
    [10] YuanJ K, Neri w,Zakri C, et al. Shape memory nanocomposite fibers for untethered high-energy microengines[J]. Science, 2019,365(6449):155-158.
    [11] ZhouG H, ByunJ H, Oh Y, et al. Highly sensitive wearable textile-based humidity sensor made of high-strength, single-walled carbon nanotube/poly(vinyI alcohol) filaments[J]. ACS Applied Materials & Interfaces, 2017, 9(5):4788-4797.
    [12] Kim T, Han G, Jung Y. Facile fabrcation of polyvinyl alcohol/edge selectively oxidized graphene composite fibers[J]. Materials (Basel), 2019,12(21):3525-3532.
    [13] Wei Y z, LaiDP, ZouL M, et al. Facile fabrication of PVA composite fibers with high fraction of multiwalled carbon nanotubes by gel spinning[J]. Polymer Engineering & Science, 2018, 58(1):37-45.
    [14] Hu D, XiaoC, Wang X, et al. Poly(vinyl alcohol) fibers with exellent mechanical properties produced by reinforcement of single-walled graphene oxide nanoribbons with complete morphology obtained by freeze-drying[J]. Fibers and Polymers, 2019, 20(12):2637-2645.
    [15] LiuJ L. Gong W B. Yao Y G, et al. Strengthening carbon nanotube fibers with semirsallized polyvinyl alcohol and hot-stretching[J]. Composites Science and Technology, 2018, 164:290-295.
    [16] Xu W H, Jambhulkar s, Verma R. et al. In situ alignment of graphene nanoplatelets in poly(vinyl alcohol) nanocomposite fibers with controlled stepwise interfacial exfoliation[J]. Nanoscale Advances, 2019, 1(7):2510-2517.
    [17] 张云鑫,魏春艳.聚乙烯醇/羧基化氧化石墨烯复合纤维的制备及性能[J].上海纺织科技,2021. 49(6):24-27. Zhang Y X,Wei C Y. Preparation and performance of GO/PVA compoite fiber[J]. Shanghai Textile Science & Technology, 2021, 49(6):24-27. (in Chinese)
    [18] PengJ, Ellingham T, Sabo R, et al. Short cllulose nanofibrils as reinforcement in polyvinyl alcohol fiber[J]. Cellulose, 2014, 21(6):4287-4298.
    [19] 王雪新,胡祖明,于俊荣,等.氧化石墨烯改性聚乙烯醇纤维的制备及性能研究[J].合成纤维,2016,45(6):9-16. WangXX, HuZ M, YuJ R, et al. Preparation and properties of polyvinyl alcohol fiber modified with graphene oxide[J]. Synthetic Fiber in China, 2016, 45(6):9-16.(in Chinese)
    [20] ZhangS, Liu P,Zhao X, et al. Enhanced tensile strength and initial modulus of poly (vinyl alcohol)/graphene oxide composite fibers via blending poly(vinyl alcohol) with poly(vinyl alohol)-grafted graphene oxide[J]. Journal of Polymer Research, 2018, 25(3):65-78.
    [21] Rol F, Belgacem M N, Gandini A, et al. Recent advances in surface-modified cellulose nanofibrils[J]. Progress in Polymer Science, 2019, 88:241-264.
    [22] 董峰.纳米纤维素增强天然高分子材料的研究进展[J].现代化工,2021(9):52-56. Dong F. Research progress on nanocellulose reinforced natural polymer materials[J]. Modern Chemical Industry, 2021(9):52-56. (in Chinese)
    [23] 张倩,唐利斌,李汝动,等.氧化石墨烯的制备还原及应用进展[J].红外与毫米波学报,2019, 38(1):79-90. ZhangQ, Tang L B, Li R J, et al. Graphene oxide:progress in preparation, reduction and application[J]. Journal of Infrared and Millimneter Waves, 2019, 38(1); 79-90. (in Chinese)
    [24] 张伟丽,程珍琪,张玉红,等.氧化石墨烯复合材料的种类及性能研究进展[J].胶体与聚合物,2016.34(1):29-31. Zhang W L. ChengZ Q. Zhang Y H, et al. Review research on the study of the cassification and properties of graphene oxide composites[J]. Chinese Journal of Colloid & Polymer, 2016, 34(1):29-31.(in Chinese)
    [25] 朱宏文,段正康,张蕾,等.氧化石墨烯的制备及结构研究进展[J].材料科学与工艺,2017. 25(6):82-88. Zhu H w, DuanZ K, Zhang L, et al. Review on preparation and structure of graphene oxide[J]. Materials Science and Technology, 2017, 25(6):82-88.(in Chinese)
    [26] LiuX, Song R, Zhang W, et al. Development of eco-friendly soy protein isolate films with high mechanical properties through HNTs, PVA, and PTGE synergism ffect[J]. Scientific Reports. 2017. 7:44289.
    [27] Yu WG, GaoXF, Wang Y z, et al. Fabrication of high performance PET/TLCP fibers through the synergistic interfacial enhancement and compatibilization of functional 1D and 2D carbon nanomaterials[J]. Macromolecular Materials and Engineering, 2021, 306(3):2000661.
    [28] 从怀萍,李森,秦海利.-种基于一维二维纳米材料协同增强的高韧性,耐撕裂三元水凝胶的制备方法:CN107082834B[P]. 2019-08-02. Cong HP, LiS, Qin H L. Preparation method of high-tenacity and tear-resistant ternary hydrogel based on synergetic enhancement of one-dimensional and two-dimensional nano-materials:CN107082834B[P]. 2019-08-02. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

雷玲,宁慧铭,阿拉木斯,胡宁,刘特斌.高强高模PVA/CNF/GO复合纤维的制备与性能研究[J].重庆大学学报,2022,45(12):125-134.

复制
分享
文章指标
  • 点击次数:482
  • 下载次数: 760
  • HTML阅读次数: 788
  • 引用次数: 0
历史
  • 收稿日期:2021-11-24
  • 在线发布日期: 2023-01-09
文章二维码