多参数耦合作用输流纳米管的振动分析
作者:
中图分类号:

O353.1

基金项目:

国家自然基金资助项目(51909196)。


Vibration analysis of fluid-conveyed single-walled carbon nanotubes embedded in elastic medium under a longitudinal magnetic field
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    基于非局部Euler-Bernoulli梁模型,考虑外加纵向磁场及Pasternak弹性基体,应用哈密顿原理建立了纵向磁场作用下嵌入弹性基体中的简支输流单层碳纳米管(SWCNT)系统振动微分方程及其边界条件。应用微分变换法(DTM)求解上述微分方程,着重研究磁场强度、Pasternak弹性基体的弹性参数与剪切参数以及纳米管小尺度系数对系统临界失稳流速的影响及各参数耦合作用时参数间的相互影响。数值计算结果表明:磁场强度与弹性基体增强系统刚度,提高系统稳定性,但二者耦合作用时对系统刚度的影响表现出“此长彼消”的特点。小尺度效应降低系统刚度,相比磁场对刚度的影响,磁场的影响更为显著。小尺度效应与弹性基体的相互影响则表现出较为复杂的特点。

    Abstract:

    Based on nonlocal Euler-Bernoulli beam theory, vibration characteristics are investigated for a fluid-conveyed single-walled carbon nanotube (SWCNT) which is embedded in an elastic medium and subjected to a longitudinal magnetic field. Governing equations of motion are derived for vibration analysis of fluid-conveyed SWCNTs, where the Lorentz magnetic force and the surrounding elastic medium have been taken into consideration. Subsequently, differential transformation method (DTM) is employed to compute the critical fluid velocity for fluid-conveyed SWCNTs with simple supported boundary condition. The obtained results are followed by a detailed parametric study of the effects of nonlocal parameter, elastic foundation parameter and longitudinal magnetic field on the vibration of fluid-conveyed SWCNTs. Through various numerical studies, the coupling effects of nonlocal parameter, elastic foundation parameter and the strength of magnetic field on the critical fluid velocity of the fluid-conveyed SWCNT are carefully examined.

    参考文献
    [1] Lü Z,Yang Y W, Liu H. High-accuracy hull iteration method for uncertainty propagation in fluid-conveying carbon nanotube system under multi-physical fields[J]. Applied Mathematical Modelling, 2020, 79:362-380.
    [2] Gao M,Bian L C. Thermal environment and strain energy related micromechanics analysis for properties of carbon nanotubes[J]. Journal of Applied Mathematics and Mechanics, 2019, 99(3):e201800169-1-e201800169-16..
    [3] 黄小林,钟德月,刘思奇,等.轴向运动碳纳米管增强复合材料板的自由振动研究[J].河南理工大学学报(自然科学版), 2022,41(1):153-158. Huang X L,ZhongD Y, LiuS Q, et al. Study on free vibration of axially moving carbon nanotube-reinforced composite plate[J]. Journal of Henan Polytechnic University (Natural Science), 2022,41(1):153-158. (in Chinese)
    [4] Arani A H, Aghdam M M, Saeedian M J. Wave propagation analysis of CNT reinforced composite micro-tube conveying viscose fluid in visco-Pasternak foundation under 2D multi-physical fields[J]. Journal of Solid Mechanics, 2018, 10(2):232-248.
    [5] Liu H,Lv Z. Vibration and instability analysis of flow-conveying carbon nanotubes in the presence of material uncertainties[J]. Physica A:Statistical Mechanics and Its Applications, 2018,511:85-103.
    [6] 李明,吕刘飞,郑华升,等.磁场对不同温度场中输流悬臂碳纳米管颤振稳定性的影响[J].固体力学学报,2021,42(1):87-93. Li M,Lü L F,Zheng H S,et al. Magnetic field effect on flutter stability of a fluid-conveying cantilevered carbon nanotube under different temperature fields[J]. Chinese Journal of Solid Mechanics, 2021, 42(1):87-93. (in Chinese)
    [7] Sadeghi-Goughari M, Jeon S, Kwon H J. Fluid structure interaction of cantilever micro and nanotubes conveying magnetic fluid with small size effects under a transverse magnetic field[J]. Journal of Fluids and Structures, 2020, 94:102951.
    [8] Dini A L, Zandi-Baghche-Maryam A, Shariati M. Effects of van der Waals forces on hygro-thermal vibration and stability of fluid-conveying curved double-walled carbon nanotubes subjected to external magnetic field[J]. Physica E:Low-Dimensional Systems and Nanostructures, 2019,106:156-169.
    [9] Wang Y, Bian L,Gao M. A non-local modeling for the influence of fluid forces on vibration characteristics of carbon nanotubes[J]. Materials Science and Engineering:B. 2021, 272:115348.
    [10] Bahaadini R,Hosseini M. Flow-induced and mechanical stability of cantilever carbon nanotubes subjected to an axial compressive load[J]. Applied Mathematical Modeling, 2018. 59:597-613.
    [11] Amiri A, Vesal R, Talbiooi R. Flexoelctric and surface efes on size-dependent flow-induced vibration and istabilitiy analysis of fluid-conveying nanotubes based on flexolectricity beam model[J]. International Journal of Mechanical Sciences, 2019,156:474-485.
    [12] Azarboni H R. Magneto-thermal primary frequency response analysis of carbon nanotube considering surface efct under different boundary conditions[J]. Composites Part B:Engineering. 2019,165:435-441.
    [13] LiuH C, Li B H, Liu Y s. The inconsistency of nonlocal efect on carbon nanotube conveying fluid and a proposed solution based on local/nonlocal model[J]. European Journal of Mechanics-A/Solids, 2019, 78:103837.
    [14] 王腾飞,黄坤,郭荣鑫.考虑非线性本构和小初始变形的单壁碳纳米管的Bernoull-Euler梁模型[J].科学技术与工程, 2021. 21(16):6575-6581. Wang T F, Huang K, Guo R X. Bernoull-Euler beam model of singlewalled carbon nanotubes with small initial deformation and nonlinear constitutive model[J]. Science Technology and Engineering, 2021, 21(16):6575-6581. (in Chinese)
    [15] Liu H, Lv Z, Wu H. Nonlinear free vibration of geometrically imperfect functionally graded sandwich nanobeams based on nonlocal strain gradient theory[J]. Composite Structures. 2019, 214:47-61.
    [16] Ghorbanpour Arani A, Jalivand A. Haghparast E Theoretical investigation on wave propagation in embedded DWBNNT conveying frofluid via stress and strain-inertia gradient elasticity[J]. Proceedings of the Institution of Mechanical Engineers, Part L:Journal of Materials:Design and Applications, 2018, 232(9):719-732.
    [17] Ghane M, Saidi A R, Bahaadini R. Vibration of fluid-conveying nanotubes subjected to magnetic field based on the thin-walled Timoshenko beam theory[J]. Applied Mathematical Modelling. 2020, 80:65-83.
    [18] Bahaadini R. Saidi A R. Hosseini M. Flow-induced vibration and stability analysis of carbon nanotubes based on the nonlocal strain gradient Timoshenko beam theory[J]. Journal of Vibration and Control, 2019, 25(1):203-218.
    [19] Sadeghi-Goughari M, Jeon S, Kwon H J. Flutter instability of cantilevered carbon nanotubes caused by magnetic fluid flow subjected to a longitudinal magnetic field[J]. Physica E:Low-Dimensional Systems and Nanostructures, 2018, 98:184-190.
    [20] Zhu B, Chen XC,Dong Y H, et al. Stability analysis of cantilever carbon nanotubes subjected to prtilly distributed tangential force and viscoelastic foundation[J]. Applied Mathematical Modelling, 2019, 73; 190-209.
    [21] Malikan M, Dimitri R,Tornabene F. Transient response of oscillated carbon nanotubes with an intermal and external damping[J]. Composites Part B:Engineering, 2019, 158:198-205.
    [22] Eringen A C. Nonlocal polar elastic continua[J]. International Journal of Engineering Science, 1972, 10(1):1-16.
    [23] Eringen A C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[J]. Journal of Aplied Physics, 1983. 54(9):4703-4710.
    [24] Wang L, Ni Q. A reappraisal of the computational modelling of carbon nanotubes conveying viscous fluid[J]. Mechanics Research Communications, 2009,36(7); 833-837.
    [25] Ghavanloo E, Daneshmand F, Rafiei M. Vibration and instability analysis of carbon nanotubes conveying fluid and resting on a linear viscoelastic Winkler foundation[J]. Physica E:Low-Dimensional Systems and Nanostructures, 2010, 42(9):2218-2224.
    [26] ChenC K, HoS H. Transverse vibration of a rotating twisted Timoshenko beams under axial loading using differential transform[J]. International Journal of Mechanical Sciences. 1999, 41(11):1339-1356.
    [27] Dini A L, Zandi-Baghche-Maryam A, Shariati M. Efects of van der Waals forces on hygro-thermal vibration and stability of fluid-conveying curved doublewalled carbon nanotubes subjected to external magnetic field[J]. Physica E:Low-Dimensional Systems and Nanostructures, 2019, 106:156-169.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李明,邓乾,吕刘飞.多参数耦合作用输流纳米管的振动分析[J].重庆大学学报,2022,45(12):135-142.

复制
分享
文章指标
  • 点击次数:326
  • 下载次数: 635
  • HTML阅读次数: 787
  • 引用次数: 0
历史
  • 收稿日期:2022-02-21
  • 在线发布日期: 2023-01-09
文章二维码