基于有限元法的复合摆线行星齿轮副应力分析
作者:
中图分类号:

TH132.414

基金项目:

国家重点研发计划资助项目(2018YFB1304800);广东省重点领域研发计划资助项目(2020B090926002)。


Stress analysis of compound cycloidal planetary gear pair based on finite element method
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对设计规范中未考虑齿廓参数对复合摆线行星齿轮副应力影响的问题,采用四阶复合摆线作为内齿廓,基于Lewis定理求解出共轭齿廓,对摆线齿廓进行了修形,最后建立实体模型进行有限元分析,分析各齿廓参数对摆线齿轮副应力的影响规律。结果表明:复合摆线行星齿轮传动为多齿啮合传动,在啮合接触的位置呈典型的赫兹接触的应力分布特征,在齿根处有轻微的应力集中区域,齿轮副的承载能力主要受限于齿面接触疲劳强度;在可能的情况下,应选取较大的模数、较大的齿高调节系数和较小的齿形调节系数,以提高齿轮副的承载能力。

    Abstract:

    There are few studies on the influence of tooth profile parameters on the stress of composite cycloid planetary gear pair. In this study, by using the fourth-order composite cycloid as the internal tooth profile, the conjugate tooth profile was designed based on Lewis theorem, and the cycloid tooth profile was modified. Finally, the solid model was established for finite element analysis, and the effects of tooth profile parameters on the stress of compound cycloid gear were analyzed. The results show that the compound cycloidal planetary gear transmission is a multi-tooth meshing transmission. The stress distribution is the typical Hertz contact at the meshing contact position, and there is a slight stress concentration area at the tooth root. The bearing capacity of gear pair is mainly limited by the contact fatigue strength of tooth surface. If possible, a larger modulus, a larger tooth height adjustment coefficient and a smaller tooth shape adjustment coefficient should be selected to improve the bearing capacity of the gear pair.

    参考文献
    [1] 张也,李朝阳,黄多.多因素综合作用的摆线针轮传动误差分析[J].重庆大学学报,2020,43(12):1-12. Zhang Y, Li C Y, Huang D. Transmission error analysis of cycloidal pinwheel based on multi-factor comprehensive efect[J]. Journal of Chongqing University, 2020, 43(12):1-12. (in Chinese)
    [2] Wang Y L,Qian Q J, Chen G D, et al. Multi-objective optimization design of cycloid pin gear planetary reducer[J]. Advances in Mechanical Engineering, 2017, 9(9):168781401772005.
    [3] Xu L X. A method for modelling contact between circular and non-circular shapes with variable radi of curvature and its application in planar mechanical systems[J]. Multibody System Dynamics, 2017, 39(3):153-174.
    [4] 韩振华,石万凯,肖洋轶,等.新型复合摆线外啮合圆柱齿轮副的传动特性分析[J].西安交通大学学报,2016,50(9):10-19,131. Han Z H, Shi W K, Xiao Y Y, et al. Analysis on transmission characteristics of novel composite cycloid cylindrical gears for external driving[J]. Journal of Xi'an Jiaotong University, 2016,50(9):10-19,131. (in Chinese)
    [5] Pollitt E P. Some applications of the cycloid in machine design[J]. Journal of Engineering for Industry, 1960, 82(4):407-414.
    [6] Lai T S. Design and machining of the epicycloid planet gear of cycloid drives[J]. The International Journal of Advanced Manufacturing Technology, 2006, 28(7/8):665-670.
    [7] ZhuCC, LiuM Y, DuXS, et al. Analysis on transmission characteristics of new axis-fixed cycloid gear[J]. Advanced Materials Research, 2010, 97/98/99/100/101:60-63.
    [8] 贵新成,詹隽青,叶鹏,等.高重合度内啮合复合摆线齿轮传动设计与分析[J].机械工程学报,2017,53(01), 53:55-64. Gui X C, ZhanJ Q, Ye P, et al. Design and analysis of internal compound cycloid gear transmission with high contact ratio[J]. Journal of Mechanical Engineering, 2017, 53(1):55-64. (in Chinese)
    [9] HanZ H, Shi W K, Liu C, et al, Geometry generation principle and meshing properties of a new gear drive[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2018,12(1):JAMDSM0012.
    [10] 石万凯,徐浪,韩振华,等.复合摆线少齿差行星传动的啮合性能分析[J].华南理工大学学报(自然科学版),2017, 45(2):66-74. Shi W K, Xu L,Han Z H, et al. Analysis of meshing properties of composite cycloid planetary driving with small teeth difference[J]. Journal of South China University of Technology (Natural Science Edition), 2017, 45(2):66-74. (in Chinese)
    [11] 刘昶,石万凯,韩振华,等.基于插齿刀具运动控制的复合摆线齿轮加工方法[J].华南理工大学学报(自然科学版), 2018,46(2):31-37. LiuC, Shi W K, Han Z H, et al. Machining method of composite cycloid gear based on the kinematic control of shaping cutter[J]. Journal of South China University of Technology (Natural Science Edition), 2018, 46(2):31-37. (in Chinese)
    [12] 黄思语,王博,曾星宇,李俊阳.少齿差金属橡胶复合摆线齿轮剮动态特性分析[J/OL].重庆大学学报:1-15[2021-05-01].http://kns.cnki.net/kems/detail/50.1044.N.20210202.1424.002.html. Huang S Y,Wang B,Zeng X Y, et al. Dynamic characteristic analysis of metal rubber compound cycloid gear pair with small tooth difference[J/OL]. Journal of Chongqing University:1-15[2021-05-01]. http://kns.cnki.net/kcms/detail/50.1044.N.20210202.1424.002.html. (in Chinese)
    [13] 秦大同,谢里阳.现代机械设计手册[M].北京:化学工业出版社,2019. Qin D T, Xie L Y. Modern machinery design manual[M]. Beiing:Chemical Industry Press, 2019.(in Chinese)
    [14] 中华人民共和国国家发展和改革委员会.中华人民共和国机械行业推荐性行业标准:摆线针轮行星传动摆线齿轮和针轮精度JB/T 10419-2005[S].北京:机械工业出版社. National Development and Reform Commission of the People's Republic of China. Machinery Standard of the People's Republie of China:Accuracy of ecycloidel gear and pin wheel for eycloidel drives. JB/T 10419-2005[S]. Beijing:China Machine Press. (in Chinese)
    [15] Feng S, Chang L H, He Z X. A hybrid finite element and analytical model for determining the mesh stiffness of internal gear pairs[J]. Journal of Mechanical Science and Technology, 2020, 34(6):2477-2485.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王森,王家序,李俊阳,王博,雷源,王成.基于有限元法的复合摆线行星齿轮副应力分析[J].重庆大学学报,2022,45(12):143-156.

复制
分享
文章指标
  • 点击次数:346
  • 下载次数: 647
  • HTML阅读次数: 661
  • 引用次数: 0
历史
  • 收稿日期:2021-07-06
  • 在线发布日期: 2023-01-09
文章二维码