基于样本扩充与IDANN的刀具状态识别方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

国家自然科学基金项目(51775072);重庆市科技创新领军人才支持计划项目(CSTCCCXLJRC201920);重庆市高校创新研究群体(CXQT20019)。


Tool status recognition method based on sample expansion and IDANN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对机床刀具磨损数据稀少与刀具磨损状态识别精度低的问题,提出了一种基于样本扩充与改进领域对抗网络(sample expansion and improved domain adversarial training of neural networks,SE-IDANN)的刀具状态识别方法。首先对机床刀具数据进行两次特征提取,并通过Smote算法进行样本扩充,解决机床刀具磨损数据量稀少的问题;其次在领域对抗网络(domain adversarial training of neural networks,DANN)模型特征提取器中加入残差块,进一步提取有效特征信息,解决刀具磨损特征微弱的难题;最后将Wasserstein距离作为目标域与源域的数据分布相似度标准引入DANN模型,实现对刀具磨损量的精确识别。通过对机床刀具数据的分析与仿真试验验证,证明该方法能够有效地识别刀具磨损量。

    Abstract:

    To deal with the problems of scarce data of machine tool wear and low recognition accuracy of tool wear status, a tool status recognition method based on sample expansion and improved domain adversarial training of neural networks (SE-IDANN) was proposed. First, to solve the problem of scarce machine tool wear data, two feature extractions on the machine tool data were performed, and the sample was expanded through the Smooth algorithm. Secondly, a residual block was added to the domain adversarial training of neural networks (DANN) feature extractor to further extract effective feature information and solve the problem of weak tool wear characteristics. Finally, to realize the accurate identification of tool wear, the Wasserstein distance used as the data distribution similarity standard between the target domain and the source domain was introduced into the DANN model. Through the analysis and test verification of machine tool data, it is proved that this method can better identify tool wear.

    参考文献
    相似文献
    引证文献
引用本文

董绍江,蒋明佑,罗召霞.基于样本扩充与IDANN的刀具状态识别方法[J].重庆大学学报,2023,46(1):16-26.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-03-04
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-06
  • 出版日期:
文章二维码