基于LASSO回归的R-vine copula模型构建及其在化工过程故障检测中的应用
作者:
中图分类号:

TP277

基金项目:

国家自然科学基金资助项目(21676086)。


Model of R-vine copula based on LASSO regression and its application in chemical process fault detection
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    Vine copula模型在描述高维数据间的非线性、非高斯特性相依关系问题上提供了一种新的思路,在化工过程建模领域受到越来越多关注。笔者将LASSO (least absolute shrinkage and selection operator)回归引入R-vine copula (LASSO-R-vine copula,LRVC),根据变量间联系的强弱程度确定变量在R-vine矩阵中的位置,利用回归分析正则化路径选择R-vine copula矩阵结构,遵循R-vine矩阵构建规则和回归过程确定R-vine结构矩阵模型,以获得一个与变量独立性有关的稀疏矩阵模型。该方法构建的矩阵结构独立于copula函数类型和参数,在处理高维度复杂工业过程数据时,利用稀疏模型和惩罚力度简化copula函数类型选择过程,缩短了建模时间,使统计建模具有更强的灵活性。该方法在TE (Tennessee Eastman)和醋酸脱水过程故障监测中表现出较好的预测效果,证明了提出的方法在非线性、非高斯过程的有效性。

    Abstract:

    The vine copula model provides a new way to describe the nonlinear and non-Gaussian dependence of high-dimensional data and has attracted more and more attention in the field of chemical process modeling. In this article, a novel chemical process fault detection method, LASSO-R-vine copula (LRVC), is proposed by introducing LASSO (least absolute shrinkage and selection operator) regression into R-vine copula. LRVC determines the position of the variables in the R-vine matrix according to the strength of the relationship between the variables, using regression to analyze the regularization path and select the R-vine copula matrix structure. The R-vine structure matrix model is determined to obtain a sparse matrix model related to variables' independence by following the R-vine matrix construction rules and regression process. The matrix structure constructed by this method is independent of the copula function type and parameters. When dealing with high-dimensional complex industrial process data, sparse models and penalties could simplify the copula function type's selection process, shorten the modeling time, and make the statistical modeling more flexible. This method shows an excellent predictive effect in TE and the acetic acid dehydration process fault monitoring, proving its effectiveness in nonlinear and non-Gaussian processes.

    参考文献
    [1] 曹立立. 基于HMM的TE过程在线故障诊断与多步故障预报[D]. 武汉:华中科技大学,2015.Cao L L. HMM-based on-line fault diagnosis and multi-step ahead fault prediction for TE process[D]. Wuhan:Huazhong University of Science & Technology, 2015. (in Chinese)
    [2] MacGregor J F, Jaeckle C, Kiparissides C, et al. Process monitoring and diagnosis by multiblock PLS methods[J]. AIChE Journal, 1994, 40(5):826-838.
    [3] Kramer M A. Nonlinear principal component analysis using autoassociative neural networks[J]. AIChE Journal, 1991, 37(2):233-243.
    [4] Zhang Y W, Hu Z Y. Multivariate process monitoring and analysis based on multi-scale KPLS[J]. Chemical Engineering Research and Design, 2011, 89(12):2667-2678.
    [5] Lee J M, Yoo C, Choi S W, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2004, 59(1):223-234.
    [6] Joe H. Families of m-variate distributions with given margins and m(m-1)/2 bivariate dependence parameters[J]. Lecture Notes-Monograph Series, 1996, 28:120-141.
    [7] Ren X, Tian Y, Li S J. Vine copula-based dependence description for multivariate multimode process monitoring[J]. Industrial & Engineering Chemistry Research, 2015, 54(41):10001-10019.
    [8] Zheng W J, Ren X, Zhou N, et al. Mixture of D-vine copulas for chemical process monitoring[J]. Chemometrics and Intelligent Laboratory Systems, 2017, 169:19-34.
    [9] 周南, 李绍军. 基于核密度估计的R-Vine Copula选择及其在故障检测中的应用[J]. 高校化学工程学报, 2019, 33(2):443-452.Zhou N, Li S J. R-Vine Copula selection based on kernel density estimation and its application in fault detection[J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(2):443-452.(in Chinese)
    [10] Haff H I, Aas K, Frigessi A, et al. Structure learning in Bayesian Networks using regular vines[J]. Computational Statistics & Data Analysis, 2016, 101:186-208.
    [11] Genest C, Favre A C. Everything you always wanted to know about copula modeling but were afraid to ask[J]. Journal of Hydrologic Engineering, 2007, 12(4):347-368.
    [12] Kurowicka D, Joe H. Dependence modeling:vine copula handbook[M]. New Jersey:World Scientific, 2011.
    [13] Hyvärinen A, Oja E. Independent component analysis:algorithms and applications[J]. Neural Networks, 2000, 13(4/5):411-430.
    [14] Cossette H, Gadoury S P, Marceau É, et al. Hierarchical Archimedean copulas through multivariate compound distributions[J]. Insurance:Mathematics and Economics, 2017, 76:1-13.
    [15] Bedford T, Cooke R M. Probability density decomposition for conditionally dependent random variables modeled by vines[J]. Annals of Mathematics and Artificial Intelligence, 2001, 32(1/2/3/4):245-268.
    [16] Chang B, Joe H. Prediction based on conditional distributions of vine copulas[J]. Computational Statistics & Data Analysis, 2019, 139:45-63.
    [17] Brechmann E C, Schepsmeier U. Modeling dependence with C- and D-vine copulas:the R package CDVine[J]. Journal of Statistical Software, 2013, 52(3):1-27.
    [18] Dißmann J, Brechmann E C, Czado C, et al. Selecting and estimating regular vine copulae and application to financial returns[J]. Computational Statistics & Data Analysis, 2013, 59:52-69.
    [19] Müller D, Czado C. Dependence modelling in ultra high dimensions with vine copulas and the Graphical Lasso[J]. Computational Statistics & Data Analysis, 2019, 137:211-232.
    [20] Tibshirani R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society:Series B (Methodological), 1996, 58(1):267-288.
    [21] Müller D, Czado C. Election of sparse vine copulas in high dimensions with the Lasso[J]. Computational Statistics and Data Analysis, 2019, 29:269-287.
    [22] Akaike H. Information theory and an extension of the maximum likelihood principle[M]//Selected papers of Hirotugu Akaike. New York:Springer, 1998:199-213.
    [23] Lee J M, Yoo C K, Lee I B. Statistical process monitoring with independent component analysis[J]. Journal of Process Control, 2004, 14(5):467-485.
    [24] Yu J, Qin S J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models[J]. AIChE Journal, 2008, 54(7):1811-1829.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

邓红涛,贾琼,李绍军,李伟.基于LASSO回归的R-vine copula模型构建及其在化工过程故障检测中的应用[J].重庆大学学报,2023,46(1):27-34.

复制
分享
文章指标
  • 点击次数:487
  • 下载次数: 671
  • HTML阅读次数: 864
  • 引用次数: 0
历史
  • 收稿日期:2021-04-20
  • 在线发布日期: 2023-02-06
文章二维码