考虑新型设备的配电网规划研究综述
作者:
中图分类号:

TM315

基金项目:

重庆市自然科学基金资助项目(cstc2019jcyj-msxmX0092)。


Review of new equipment integrated distribution network planning
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [59]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    随着分布式能源、电动汽车、多能耦合元件等新型设备的接入,配电网呈现出多样化、不确定化和复杂化等新特点。文章围绕新型设备大规模接入下的配电网规划研究展开综述。首先,分析配电网规划中的源荷功率模拟方法;其次,介绍考虑不同要素的配电网规划模型,并综述多种配电网规划策略与求解算法;最后,结合现有问题,从人工智能和能源互联网两方面,对配电网规划理论与技术的发展做出展望。

    Abstract:

    With the integration of renewable energy resources, electrical vehicles, multiple energy coupling equipment and other new elements, distribution network has new characteristics, including diversification, high uncertainty and complexity. This paper reviews the research on the planning methods for new equipment integrated distribution network. Firstly, the simulation approaches of generation power and load power used in distribution network planning are investigated. Secondly, the distribution network planning models considering different factors are introduced. Several optimization strategies and solution algorithms for distribution network planning are also reviewed. Finally, with considering the state-of-the-art and the developments of AI technology and energy internet, the prospect of distribution network planning theories and technologies under new conditions are presented.

    参考文献
    [1] 孔涛, 程浩忠, 李钢, 等. 配电网规划研究综述[J]. 电网技术, 2009, 33(19):92-99.Kong T, Cheng H Z, Li G, et al. Review of power distribution network planning[J]. Power System Technology, 2009, 33(19):92-99.(in Chinese)
    [2] 朱嘉远, 刘洋, 许立雄, 等. 风电全消纳下的配电网储能可调鲁棒优化配置[J]. 电网技术, 2018, 42(6):1875-1883.Zhu J Y, Liu Y, Xu L X, et al. Adjustable robust optimization for energy storage system in distribution network based on wind power full accommodation[J]. Power System Technology, 2018, 42(6):1875-1883.(in Chinese)
    [3] 曾鸣, 于壮状, 闫彤, 等. 计及电动汽车负荷的智能配电系统多阶段规划模型研究[J]. 华北电力大学学报(自然科学版), 2019, 46(4):63-70.Zeng M, Yu Z Z, Yan T, et al. Study on multi-stage planning method for intelligent power distribution system considering PEV load[J]. Journal of North China Electric Power University (Natural Science Edition), 2019, 46(4):63-70.(in Chinese)
    [4] Shen X W, Shahidehpour M, Zhu S Z, et al. Multi-stage planning of active distribution networks considering the co-optimization of operation strategies[J]. IEEE Transactions on Smart Grid, 2018, 9(2):1425-1433.
    [5] 张雪松, 周旋, 李卓, 等. 面向能源互联网的未来配电网优化规划[J]. 电力建设, 2017, 38(2):45-51.Zhang X S, Zhou X, Li Z, et al. Optimization planning of future distribution network orienting to energy Internet[J]. Electric Power Construction, 2017, 38(2):45-51.(in Chinese)
    [6] Verdejo H, Escudero W, Kliemann W, et al. Impact of wind power generation on a large scale power system using stochastic linear stability[J]. Applied Mathematical Modelling, 2016, 40(17/18):7977-7987.
    [7] Aizpurua J I, Stewart B G, McArthur S D J, et al. Improved power transformer condition monitoring under uncertainty through soft computing and probabilistic health index[J]. Applied Soft Computing, 2019, 85:105530.
    [8] Yu S Y, Fang F, Liu Y J, et al. Uncertainties of virtual power plant:problems and countermeasures[J]. Applied Energy, 2019, 239:454-470.
    [9] 王少轩. 面向农网高比例光伏消纳的储能和需求响应优化配置研究[D]. 秦皇岛:燕山大学, 2019.Wang S X. Optimal configuration research of energy storage and demand response for high-proportion PV consumption in rural power grids[D]. Qinhuangdao:Yanshan University, 2019. (in Chinese)
    [10] 石玉东, 刘晋源, 徐松, 等. 考虑时序特性的配电网风[XC半字线.tif,JZ] 光[XC半字线.tif,JZ] 储随机规划模型[J]. 电力系统保护与控制, 2019, 47(10):23-32.Shi Y D, Liu J Y, Xu S, et al. Integrated wind-photovoltaic-storage stochastic planning model considering time-varying characteristics in distribution network[J]. Power System Protection and Control, 2019, 47(10):23-32.(in Chinese)
    [11] Gangwar P, Singh S N, Chakrabarti S. Multi-objective planning model for multi-phase distribution system under uncertainty considering reconfiguration[J]. IET Renewable Power Generation, 2019, 13(12):2070-2083.
    [12] 张沈习, 李珂, 程浩忠, 等. 主动管理模式下分布式风电源选址定容规划[J]. 电力系统自动化, 2015, 39(9):208-214.Zhang S X, Li K, Cheng H Z, et al. Siting and sizing planning of distributed wind generators under active management mode[J]. Automation of Electric Power Systems, 2015, 39(9):208-214.(in Chinese)
    [13] Sun M Y, Cremer J, Strbac G. A novel data-driven scenario generation framework for transmission expansion planning with high renewable energy penetration[J]. Applied Energy, 2018, 228:546-555.
    [14] Mahdavi S, Hemmati R, Jirdehi M A. Two-level planning for coordination of energy storage systems and wind-solar-diesel units in active distribution networks[J]. Energy, 2018, 151:954-965.
    [15] Ma Y J, Azuatalam D, Power T, et al. A novel probabilistic framework to study the impact of photovoltaic-battery systems on low-voltage distribution networks[J]. Applied Energy, 2019, 254:113669.
    [16] 张海鹏, 林舜江, 刘明波. 考虑光伏不确定性的低压配电网分散无功补偿鲁棒优化配置[J]. 电网技术, 2016, 40(12):3880-3888.Zhang H P, Lin S J, Liu M B. Robust optimal allocation of reactive power compensation in low voltage distribution networks considering uncertainty of photovoltaic generation[J]. Power System Technology, 2016, 40(12):3880-3888.(in Chinese)
    [17] 颜炯, 万涛, 李浩松, 等. 计及不确定性因素的配电网网架规划方法[J]. 电力系统保护与控制, 2017, 45(18):76-81.Yan J, Wan T, Li H S, et al. Distribution network planning considering the uncertainties[J]. Power System Protection and Control, 2017, 45(18):76-81.(in Chinese)
    [18] 蔡佳铭, 张涛, 王承民, 等. 计及源荷不确定性的主动配电网网架扩展柔性规划[J]. 电力自动化设备, 2019, 39(10):109-115.Cai J M, Zhang T, Wang C M, et al. Flexible planning of active distribution network expansion considering source and load uncertainty[J]. Electric Power Automation Equipment, 2019, 39(10):109-115.(in Chinese)
    [19] Santos S F, Fitiwi D Z, Bizuayehu A W, et al. Novel multi-stage stochastic DG investment planning with recourse[J]. IEEE Transactions on Sustainable Energy, 2017, 8(1):164-178.
    [20] Wang R H, Li C S, Fu W L, et al. Deep learning method based on gated recurrent unit and variational mode decomposition for short-term wind power interval prediction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(10):3814-3827.
    [21] Azad H B, Mekhilef S, Ganapathy V G. Long-term wind speed forecasting and general pattern recognition using neural networks[J]. IEEE Transactions on Sustainable Energy, 2014, 5(2):546-553.
    [22] Eom H, Son Y, Choi S. Feature-selective ensemble learning-based long-term regional PV generation forecasting[J]. IEEE Access, 2020, 8:54620-54630.
    [23] 韩天轮. 考虑电动汽车负荷影响的配电网规划及运行研究[D]. 北京:华北电力大学(北京), 2019.Han T L. Research on distribution network planning and operation costsidering the influence of electric vehicle[D]. Beijing:North China Electric Power University, 2019. (in Chinese)
    [24] 沈依婷, 张菁, 武鹏, 等. 含电动汽车的配电网双重不确定性网架规划方法[J]. 中国电力, 2020, 53(4):139-146.Shen Y T, Zhang J, Wu P, et al. Bi-uncertainty network frame planning method for distribution network with electric vehicles[J]. Electric Power, 2020, 53(4):139-146.(in Chinese)
    [25] 黄珊. 配电网规划的回归分析负荷预测方法研究[D]. 长沙:湖南大学, 2010.Huang S. Research of load forecasting method based on regression analysis in distribution network planning[D]. Changsha:Hunan University, 2010. (in Chinese)
    [26] 曾鸣, 杜楠, 张鲲, 等. 基于多目标静态模糊模型的分布式电源规划[J]. 电网技术, 2013, 37(4):954-959.Zeng M, Du N, Zhang K, et al. Distributed generation planning based on multiobjective static fuzzy model[J]. Power System Technology, 2013, 37(4):954-959.(in Chinese)
    [27] 吴志, 刘亚斐, 顾伟, 等. 基于改进Benders分解的储能、分布式电源与配电网多阶段规划[J]. 中国电机工程学报, 2019, 39(16):4705-4715, 4973.Wu Z, Liu Y F, Gu W, et al. A modified decomposition method for multistage planning of energy storage, distributed generation and distribution network[J]. Proceedings of the CSEE, 2019, 39(16):4705-4715, 4973.(in Chinese)
    [28] 马艳霞, 车彬, 孟旭红, 等. 基于多目标的多阶段主动配电网规划方法分析[J]. 电网与清洁能源, 2019, 35(10):62-67.Ma Y X, Che B, Meng X H, et al. Analysis of multi-stage active distribution network planning method based on multi-objective[J]. Power System and Clean Energy, 2019, 35(10):62-67.(in Chinese)
    [29] 陈潇雅, 刘志坚, 刘晓欣, 等. 基于长期负荷预测和联络分析的配电网规划[J]. 广东电力, 2019, 32(3):59-65.Chen X Y, Liu Z J, Liu X X, et al. Distribution network planning based on long-term load forecasting and Tie-line analysis[J]. Guangdong Electric Power, 2019, 32(3):59-65.(in Chinese)
    [30] Georgescu G. Aspects concerning power distribution networks planning using artificial intelligence[C]//14th International Conference and Exhibition on Electricity Distribution (CIRED 1997- Distributing Power for the Millennium). IEEE, 1997:1-5.
    [31] Motepe S, Hasan A, Stopforth R. Improving load forecasting process for a power distribution network using hybrid AI and deep learning algorithms[J]. IEEE Access, 2019, 7:82584-82598.
    [32] Dong M, Grumbach L. A hybrid distribution feeder long-term load forecasting method based on sequence prediction[J]. IEEE Transactions on Smart Grid, 2020, 11(1):470-482.
    [33] 王洋. 智能电网的负荷预测与定价研究[D]. 青岛:青岛大学, 2016.Wang Y. Study on load forecasting and pricing of smart grid[D]. Qingdao:Qingdao University, 2016. (in Chinese)
    [34] 陆继翔, 张琪培, 杨志宏, 等. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(8):131-137.Lu J X, Zhang Q P, Yang Z H, et al. Short-term load forecasting method based on CNN-LSTM hybrid neural network model[J]. Automation of Electric Power Systems, 2019, 43(8):131-137.(in Chinese)
    [35] 邓永生, 焦丰顺, 张瑞锋, 等. 配电网规划中电力负荷预测方法研究综述[J]. 电器与能效管理技术, 2019(14):1-7.Deng Y S, Jiao F S, Zhang R F, et al. Research review on power load forecasting methods in distribution network planning[J]. Electrical & Energy Management Technology, 2019(14):1-7.(in Chinese)
    [36] 王成山, 王瑞, 于浩, 等. 配电网形态演变下的协调规划问题与挑战[J]. 中国电机工程学报, 2020, 40(8):2385-2396.Wang C S, Wang R, Yu H, et al. Challenges on coordinated planning of smart distribution networks driven by source-network-load evolution[J]. Proceedings of the CSEE, 2020, 40(8):2385-2396.(in Chinese)
    [37] Wang S C, Sun Y Y, Li Y H, et al. Optimal planning of distributed generation and loads in active distribution network:a review[C]//20204th International Conference on Green Energy and Applications (ICGEA). IEEE, 2020:176-181.
    [38] 刘洪, 王博, 李梅菊, 等. 基于改进加权Voronoi图算法的有源配电网变电站规划[J]. 电力系统自动化, 2017, 41(13):45-52.Liu H, Wang B, Li M J, et al. Substation planning of active distribution network based on improved weighted voronoi diagram method[J]. Automation of Electric Power Systems, 2017, 41(13):45-52.(in Chinese)
    [39] 苏海锋, 张建华, 梁志瑞, 等. 基于GIS空间分析与改进粒子群算法的变电站全寿命周期成本规划[J]. 中国电机工程学报, 2012, 32(16):92-99.Su H F, Zhang J H, Liang Z R, et al. Substation life cycle cost planning based on the GIS spatial analysis and improved PSO algorithm[J]. Proceedings of the CSEE, 2012, 32(16):92-99.(in Chinese)
    [40] Franco J F, Rider M J, Romero R. A mixed-integer quadratically-constrained programming model for the distribution system expansion planning[J]. International Journal of Electrical Power & Energy Systems, 2014, 62:265-272.
    [41] Najafi S, Hosseinian S H, Abedi M, et al. A framework for optimal planning in large distribution networks[J]. IEEE Transactions on Power Systems, 2009, 24(2):1019-1028.
    [42] Wang S C, Sun Y Y, Li Y H, et al. Optimal planning of distributed generation and loads in active distribution network:a review[C]//20204th International Conference on Green Energy and Applications (ICGEA). IEEE, 2020:176-181.
    [43] Gao Y J, Hu X B, Yang W H, et al. Multi-objective bilevel coordinated planning of distributed generation and distribution network frame based on multiscenario technique considering timing characteristics[J]. IEEE Transactions on Sustainable Energy, 2017, 8(4):1415-1429.
    [44] 霍凯龙. 大规模配电网变电站多阶段规划优化实用方法研究[D]. 重庆:重庆大学, 2014.Huo K L. Study on practical method of multi-stage planning optimization for a large-scale distribution substation system[D]. Chongqing:Chongqing University, 2014. (in Chinese)
    [45] 段庆, 孙云莲, 张笑迪, 等. 电动汽车充电桩选址定容方法[J]. 电力系统保护与控制, 2017, 45(12):88-93.Duan Q, Sun Y L, Zhang X D, et al. Location and capacity planning of electric vehicles charging piles[J]. Power System Protection and Control, 2017, 45(12):88-93.(in Chinese)
    [46] 王彦虹. 风储联合系统中储能选址定容及控制策略研究[D]. 上海:上海交通大学, 2017.Wang Y H. Research on the control strategy and optimal sizing of the battery storage in the wind-storage hybrid system[D]. Shanghai:Shanghai Jiao Tong University, 2017. (in Chinese)
    [47] 王毅, 张宁, 康重庆. 能源互联网中能量枢纽的优化规划与运行研究综述及展望[J]. 中国电机工程学报, 2015, 35(22):5669-5681.Wang Y, Zhang N, Kang C Q. Review and prospect of optimal planning and operation of energy hub in energy Internet[J]. Proceedings of the CSEE, 2015, 35(22):5669-5681.(in Chinese)
    [48] 邢海军, 程浩忠, 张沈习, 等. 主动配电网规划研究综述[J]. 电网技术, 2015, 39(10):2705-2711.Xing H J, Cheng H Z, Zhang S X, et al. Review of active distribution network planning[J]. Power System Technology, 2015, 39(10):2705-2711.(in Chinese)
    [49] Zhang X J, Karady G G, Ariaratnam S T. Optimal allocation of CHP-based distributed generation on urban energy distribution networks[J]. IEEE Transactions on Sustainable Energy, 2014, 5(1):246-253.
    [50] Zhang X P, Shahidehpour M, Alabdulwahab A, et al. Optimal expansion planning of energy hub with multiple energy infrastructures[J]. IEEE Transactions on Smart Grid, 2015, 6(5):2302-2311.
    [51] 王珺, 顾伟, 陆帅, 等. 结合热网模型的多区域综合能源系统协同规划[J]. 电力系统自动化, 2016, 40(15):17-24.Wang J, Gu W, Lu S, et al. Coordinated planning of multi-district integrated energy system combining heating network model[J]. Automation of Electric Power Systems, 2016, 40(15):17-24.(in Chinese)
    [52] Britain's Power System:The case for a system architect[EB/OL].http://www.theiet.org.
    [53] 马钊, 周孝信, 尚宇炜, 等. 未来配电系统形态及发展趋势[J]. 中国电机工程学报, 2015, 35(6):1289-1298.Ma Z, Zhou X X, Shang Y W, et al. Form and development trend of future distribution system[J]. Proceedings of the CSEE, 2015, 35(6):1289-1298.(in Chinese)
    [54] 杨楠, 董邦天, 黄禹, 等. 考虑不确定性和多主体博弈的增量配电网源网荷协同规划方法[J]. 中国电机工程学报, 2019, 39(9):2689-2702.Yang N, Dong B T, Huang Y, et al. Incremental distribution network source-load collaborative planning method considering uncertainty and multi-agent game[J]. Proceedings of the CSEE, 2019, 39(9):2689-2702.(in Chinese)
    [55] Hadjsaid A, Alvarez-Herault M C, Debusschere V, et al. Integrating storage in planning of LV distribution networks with PV production[J]. IET Generation, Transmission & Distribution, 2020, 14(1):79-86.
    [56] 肖白, 郭蓓. 配电网规划研究综述与展望[J]. 电力自动化设备, 2018, 38(12):200-211, 217.Xiao B, Guo B. Review and prospect of distribution network planning[J]. Electric Power Automation Equipment, 2018, 38(12):200-211, 217.(in Chinese)
    [57] 刘全, 翟建伟, 章宗长, 等. 深度强化学习综述[J]. 计算机学报,2018, 41(1):1-27.Liu Q, Zhai J W, Zhang Z C, et al. A survey on deep reinforcement learning[J]. Chinese Journal of Computers, 2018, 41(1):1-27. (in Chinese)
    [58] 王渝红, 胡胜杰, 宋雨妍, 等. 基于强化学习理论的输电网扩展规划方法[J]. 电网技术, 2021, 45(7):2829-2838.Wang Y H, Hu S J, Song Y Y, et al. Transmission expansion planning based on reinforcement learning[J]. Power System Technology, 2021, 45(7):2829-2838.(in Chinese)
    [59] 万里鹏, 兰旭光, 张翰博, 等. 深度强化学习理论及其应用综述[J]. 模式识别与人工智能, 2019, 32(1):67-81.Wan L P, Lan X G, Zhang H B, et al. A review of deep reinforcement learning theory and application[J]. Pattern Recognition and Artificial Intelligence, 2019, 32(1):67-81.(in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

罗旭,罗潇,温力力,范丽,李博,刘璐桡,刘华勇,任洲洋.考虑新型设备的配电网规划研究综述[J].重庆大学学报,2023,46(1):35-45.

复制
分享
文章指标
  • 点击次数:429
  • 下载次数: 807
  • HTML阅读次数: 1055
  • 引用次数: 0
历史
  • 收稿日期:2021-03-05
  • 在线发布日期: 2023-02-06
文章二维码