挡风墙尾流作用下导线表面粗糙度对接触网正馈线气动特性的影响
作者:
中图分类号:

TM 351

基金项目:

国家自然科学基金资助项目(51867013);兰州交通大学天佑创新团队计划(TY202010)。


The influence of wire surface roughness on the aerodynamic characteristics of the catenary positive feeder under the action of the wake flow of the wind-break wall
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    大风经过兰新高铁沿线挡风墙后,容易引发接触网正馈线发生舞动现象。为分析挡风墙尾流作用下导线表面粗糙度对正馈线气动特性的影响,基于流体力学建立铁路挡风墙尾流风洞实验装置与5种不同表面粗糙度导线模型。由于导线与整体计算域尺寸差距悬殊,对整体计算域的网格采用分块划分。利用流体仿真软件研究不同风速下正馈线的气动特性。结果表明:正馈线表面粗糙度越低,升、阻力增大越明显。在入口风速为1 m/s时,不同表面粗糙度正馈线升、阻力系数基本值保持稳定;在入口风速大于5 m/s时,随着表面粗糙度降低,正馈线升、阻力系数增大;不同表面粗糙度的正馈线尾部流场产生的漩涡不同,并且在导线凹凸处产生不同的细小漩涡。正馈线近壁面的气体流动特征发生较大变化,对导线气动特性影响较为明显。

    Abstract:

    After the strong wind passed through the windshield wall along the Lanzhou-Xinjiang high-speed railway, the catenary positive feeder was galloping. In order to analyze the influence of the surface roughness of the stranded wire on the aerodynamic characteristics of the positive feeder under the action of the wake flow of the wind-break wall, a windshield wake wind tunnel experimental device and five wire models with different degrees of surface roughness were established based on fluid mechanics. Due to the large gap between the size of the wire and the overall computing domain, the fluid grid of the overall computing domain is divided into blocks. The fluid simulation software is used to study the aerodynamic characteristics of the forward feeder under different inlet wind speeds. The results show that the lower the surface roughness of the positive feeder is, the more obvious the lift and drag increase. When the inlet wind speed is 1m/s, the basic values of the lift and resistance coefficients of positive feeders with different degrees of surface roughness remain stable. When the inlet wind speed is greater than 5 m/s, the lift and drag coefficients of the positive feeder increase as the surface roughness of the positive feeder decreases. The vortices generated in the tail flow field of positive feeder with different degrees of surface roughness are different, and different small vortices are generated at the concave-convex of the wire. The air flow characteristics near the wall of the positive feeder have changed greatly, and the influence on the aerodynamic characteristics of the wire is obvious.

    参考文献
    [1] 韩佳栋. 大风区高速铁路接触网附加导线舞动机理及防护措施研究[J]. 铁道标准设计, 2015, 59(12):125-129.Han J D. Study on mechanism of high-speed railway OCS additional wire dancing in strong wind area and protective measures[J]. Railway Standard Design, 2015, 59(12):125-129. (in Chinese)
    [2] 黄双林. 兰新高铁防风标准研究[J]. 铁道工程学报, 2019, 36(6):14-17,73.Huang S L. Research on the wind break standard of Lanzhou-Urumqi high-speed railway[J]. Journal of Railway Engineering Society, 2019, 36(6):14-17,73.(in Chinese)
    [3] 肖建华, 姚正毅, 屈建军, 等. 兰新铁路百里风区极端风况特征及形成机制[J]. 中国铁道科学, 2016, 37(3):130-137.Xiao J H, Yao Z Y, Qu J J, et al. Characteristics and formation mechanism of extreme wind in hundred-Li wind zone along lanxin railway[J]. China Railway Science, 2016, 37(3):130-137.(in Chinese)
    [4] 孟祥连, 李鲲, 谢胜波, 等. 兰新高铁大风区风况特征及防风工程设计分区[J]. 中国沙漠, 2018, 38(5):972-977.Meng X L, Li K, Xie S B, et al. Strong wind environmental characteristics and countermeasures according to engineering divisions along a high-speed railway[J]. Journal of Desert Research, 2018, 38(5):972-977.(in Chinese)
    [5] 孔化蓉. 强风区接触网附加悬挂零件适应性及安装方式探讨[J]. 电气化铁道, 2018, 29(S1):131-135.Kong H R. Investigation of adaptability and installation mode for additional suspension fittings of overhead contact line in strong wind area[J]. Electric Railway, 2018, 29(S1):131-135. (in Chinese)
    [6] Fage A, Warsap G H. The effects of turbulence and surface roughness on the drag of a circular cylinder[J]. Aeronautical Research Committee, Rep and Memo, 1929:14-22.
    [7] Tabatabai M, Krishnasamy S G, Meale J, et al. Response of smooth body, trapezoidal wire overhead (compact) conductors to wind loading[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 41(1/2/3):825-834.
    [8] 张友鹏, 王彤, 赵珊鹏, 等. 兰新高铁大风区段挡风墙对接触网正馈线气动特性的影响[J]. 铁道科学与工程学报, 2019, 16(7):1628-1636.Zhang Y P, Wang T, Zhao S P, et al. Influence of wind-break wall on aerodynamic characteristics of positive feeder of overhead contact line of Lanzhou-Xinjiang high-speed railway[J]. Journal of Railway Science and Engineering, 2019, 16(7):1628-1636.(in Chinese)
    [9] Japanese E C. Design standard on structures for transmissions[Z]. JEC-127-1979, Denkishoin, Japan, 1979.
    [10] Votaw C W, Griffin O M. Vortex shedding from smooth cylinders and stranded cables[J]. Journal of Basic Engineering, 1971, 93(3):457-460.
    [11] Relf E F, Powell C H. Tests on smooth and stranded wires inclined to the wind direction and a comparion of result on stranded wires in air and water[J]. Aeronautical Research Committee, Rep and Memo, 1917:8-14.
    [12] 刘军.高雷诺数下输电导线流固耦合数值模拟[D].重庆:重庆大学,2016.Liu J. Numerical simulation of transmission lines fluid-structure interaction at high reynolds number[D]. Chongqing:Chongqing University, 2016. (in Chinese)
    [13] 党朋, 吴细毛, 刘斌, 等. 新型同心绞导线风阻力系数风洞试验[J]. 电线电缆, 2014(4):30-33.Dang P, Wu X M, Liu B, et al. Wind tunnel test on drag coefficient of new type concentric-lay-stranded conductors[J]. Electric Wire & Cable, 2014(4):30-33.(in Chinese)
    [14] 林影超.风沙环境对LGJ-400/50架空导线表面的侵蚀规律研究[D].北京:华北电力大学,2015.Lin Y C. Research on LGJ-400/50 ACSR surface erosion characteristics in wind sand environment[D]. Beijing:North China Electric Power University, 2015. (in Chinese)
    [15] Rodrguez I, Lehmkuhl O, Piomelli U, et al. Numerical simulation of roughness effects on the flow past a circular cylinder[J]. Journal of Physics:Conference Series, 2016(745):1-8.
    [16] Stringer R M, Zang J, Hillis A J. Unsteady RANS computations of flow around a circular cylinder for a wide range of Reynolds numbers[J].Ocean Engineering,2014(87):1-9.
    [17] 王玉环. 兰新高铁大风区接触网正馈线悬挂结构适应性分析[J]. 铁道标准设计, 2018, 62(3):124-127,134.Wang Y H. Adaptability analysis of suspended structure of overhead contact line in wind areas along Lanzhou-Urumqi high speed railway[J]. Railway Standard Design, 2018, 62(3):124-127,134.(in Chinese)
    [18] Trias F X, Lehmkuhl O, Oliva A, et al. Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids[J]. Journal of Computational Physics, 2014(258):246-267.
    [19] 雷娟棉, 谭朝明. 基于Transition SST模型的高雷诺数圆柱绕流数值研究[J]. 北京航空航天大学学报, 2017, 43(2):207-217.Lei J M, Tan Z M. Numerical simulation for flow around circular cylinder at high Reynolds number based on Transition SST model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(2):207-217.(in Chinese)
    [20] Zdravkovich M M. Flow around circular cylinders Vol.2:Applications[M]. Oxford:Oxford Science Publications, 2003.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵珊鹏,岳永文,张友鹏.挡风墙尾流作用下导线表面粗糙度对接触网正馈线气动特性的影响[J].重庆大学学报,2023,46(1):46-56.

复制
分享
文章指标
  • 点击次数:367
  • 下载次数: 724
  • HTML阅读次数: 709
  • 引用次数: 0
历史
  • 收稿日期:2021-03-18
  • 在线发布日期: 2023-02-06
文章二维码