自适配权重特征融合的持续身份认证
作者:
中图分类号:

UTP391.4

基金项目:

国家自然科学基金资助项目(61672119)。


Continuous authentication based on adaptive deep feature fusion
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对现有智能手机用户身份认证方法的不足,提出了一种自适配权重特征融合的持续身份认证方法。设计了一种卷积神经网络,对手机内置传感器(加速度计、陀螺仪、磁力计)获取的用户行为信息数据进行深度特征提取及融合。通过网络中3个子网络流分别提取3种传感器特征,在特征融合层加权融合,各特征的权值会在网络学习过程中根据不同特征的贡献度实现自适应分配。融合特征经过特征选择之后,使用单分类支持向量机进行用户分类认证。实验结果表明:该方法对不同用户身份认证获得的等错误率为1.20%,与现有其他认证方法相比具有更好的认证准确性。

    Abstract:

    To address the shortcomings of the existing smartphone user authentication methods, this paper proposes a continuous identity authentication method based on adaptive weight feature fusion. A convolution neural network is designed to extract and fuse the deep features of user behavior information data obtained from the built-in sensors (accelerometer, gyroscope, magnetometer) of mobile phones. In the network, three kinds of sensor features are extracted from the three sub-network flows respectively, and weighted fusion is performed in the feature fusion layer. The weight of each feature is adaptively assigned according to the contribution of different features in the network learning process. After feature selection for fused features, one-class support vector machine is used for user classification and authentication. The experimental results show that this method achieves an equal error rate of 1.20% for different user authentication. Compared with other existing authentication methods, the proposed method demonstrates better authentication accuracy.

    参考文献
    [1] Abuhamad M, Abusnaina A, Nyang D H, et al. Sensor-based continuous authentication of smartphones' users using behavioral biometrics:a contemporary survey[J].IEEE Internet of Things Journal, 2020, 8(1):65-84.
    [2] Mahfouz A, Mahmoud T M, Eldin A S. A survey on behavioral biometric authentication on smartphones[J]. Journal of Information Security and Applications, 2017, 37:28-37.
    [3] Nickel C, Wirtl T, Busch C. Authentication of smartphone users based on the way they walk using k-nn algorithm[C]//2012 Eighth International Conference on Intelligent Information Hiding and Multimedia Signal Processing. IEEE, 2012:16-20.
    [4] Hoang T, Choi D, Nguyen T. Gait authentication on mobile phone using biometric cryptosystem and fuzzy commitment scheme[J]. International Journal of Information Security, 2015, 14(6):549-560.
    [5] Shih D H, Lu C M, Shih M H. A flick biometric authentication mechanism on mobile devices[C]//2015 International Conference on Informative and Cybernetics for Computational Social Systems (ICCSS). IEEE, 2015:31-33.
    [6] Lin C C, Chang C C, Liang D, et al. A new non-intrusive authentication method based on the orientation sensor for smartphone users[C]//2012 IEEE Sixth International Conference on Software Security and Reliability. IEEE, 2012:245-252.
    [7] Volaka H C, Alptekin G, Basar O E, et al. Towards continuous authentication on mobile phones using deep learning models[J]. Procedia Computer Science, 2019, 155:177-184.
    [8] Giorgi G, Saracino A, Martinelli F. Using recurrent neural networks for continuous authentication through gait analysis[J]. Pattern Recognition Letters, 2021.
    [9] Xiaofeng L, Shengfei Z, Shengwei Y. Continuous authentication by free-text keystroke based on CNN plus RNN[J]. Procedia Computer Science, 2019, 147:314-318.
    [10] Sitová Z, Šeděnka J, Yang Q, et al. HMOG:New behavioral biometric features for continuous authentication of smartphone users[J]. IEEE Transactions on Information Forensics and Security, 2015, 11(5):877-892.
    [11] Prakash A. Continuous user authentication based score level fusion with hybrid optimization[J]. Cluster Computing, 2019, 22(5):12959-12969.
    [12] Do S, Hoang T, Luong C, et al. Using keystroke dynamics for implicit authentication on smartphone[J]. Journal of Korea Multimedia Society, 2014, 17(8):968-976.
    [13] Lamiche I, Bin G, Jing Y, et al. A continuous smartphone authentication method based on gait patterns and keystroke dynamics[J]. Journal of Ambient Intelligence and Humanized Computing, 2019, 10(11):4417-4430.
    [14] Buriro A, Crispo B, Gupta S, et al. Dialerauth:A motion-assisted touch-based smartphone user authentication scheme[C]//Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy. 2018:267-276.
    [15] Li Y, Zou B, Deng S, et al. Using feature fusion strategies in continuous authentication on smartphones[J]. IEEE Internet Computing, 2020, 24(2):49-56.
    [16] Gao L, Lian Y, Yang H, et al. Continuous authentication of mouse dynamics based on decision level fusion[C]//2020 International Wireless Communications and Mobile Computing (IWCMC). IEEE, 2020:210-214.
    [17] Zhang Q, Li H, Sun Z, et al. Deep feature fusion for iris and periocular biometrics on mobile devices[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(11):2897-2912.
    [18] Yang Q, Peng G, Nguyen D T, et al. A multimodal data set for evaluating continuous authentication performance in smartphones[C]//Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems. 2014:358-359.
    [19] Ma N, Zhang X, Zheng H T, et al. Shufflenet V2:Practical guidelines for efficient cnn architecture design[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018:116-131.
    [20] Shen C, Li Y, Chen Y, et al. Performance analysis of multi-motion sensor behavior for active smartphone authentication[J]. IEEE Transactions on Information Forensics and Security, 2017,13(1):48-62.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陶鹏,邓绍江.自适配权重特征融合的持续身份认证[J].重庆大学学报,2023,46(1):103-112.

复制
分享
文章指标
  • 点击次数:381
  • 下载次数: 765
  • HTML阅读次数: 737
  • 引用次数: 0
历史
  • 收稿日期:2021-03-01
  • 在线发布日期: 2023-02-06
文章二维码