一种新型螺旋变形软体驱动器建模方法及应用
作者:
基金项目:

国家自然科学基金资助项目(51705050)。


Modeling method and application of a novel helix deformation soft actuator
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    软体驱动器的变形方式主要为弯曲、伸缩变形,限制了软体驱动器的灵活性。为了提高软体驱动器的操作灵活性,提出一种新型的螺旋扭转变形软体驱动器。通过拉线驱动软体变形,骨架限制驱动器产生螺旋变形,实现驱动器末端在三维空间中的可控运动。基于常曲率连续软体运动学理论及螺旋扭转变形的几何关系,建立了一种适用于常曲率螺旋变形运动学模型,获取在全局坐标系下驱动器末端的坐标变换矩阵,实现对驱动器位姿的描述。通过仿真和实验数据验证,模型精度大于98%。为螺旋扭转变形驱动器的控制建立精确的运动学模型,为未来基于此软体驱动器的超高灵活性抓手的搭建提供了理论模型基础。

    Abstract:

    The soft actuator has great development potential in the fields of medical care, rescue, service, and manufacturing with the advantages of a high degree of flexibility and good adaptability. Currently, the deformation types of the soft actuator are mainly bending, expansion and contraction, which limits the greater flexibility of the soft actuator. To improve the operation of the soft actuator, a new type of soft actuator with helical deformation is proposed. The proposed soft actuator is driven by the pulling cable, and the helical deformation is generated by the scaffold so as to realize the controllable movement of the soft actuator end in three-dimensional space. Based on the kinematics theory of constant curvature continuous robot and the geometric relationship of helical deformation, a kinematic model for constant curvature helical deformation is developed to obtain the coordinate transformation matrix of the actuator end in the global coordinate. Simulation and experiments show that the model accuracy is greater than 98%. By presenting an accurate kinematics model for the helical deformation soft actuator, this study provides a theoretical model basis for the construction of the ultra-high flexibility gripper based on this actuator in the future.

    参考文献
    [1] Butterfass J, Grebenstein M, Liu H, et al. DLR-Hand II:next generation of a dextrous robot hand[C]//Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation, May 21-26, 2001, Seoul, Korea (South). IEEE, 2006:109-114.
    [2] Kawasaki H, Komatsu T, Uchiyama K. Dexterous anthropomorphic robot hand with distributed tactile sensor:Gifu hand II[J]. IEEE/ASME Transactions on Mechatronics, 2002, 7(3):296-303.
    [3] Gu G Y, Zou J, Zhao R K, et al. Soft wall-climbing robots[J]. Science Robotics, 2018, 3(25):eaat2874.
    [4] Li T F, Li G R, Liang Y M, et al. Fast-moving soft electronic fish[J]. Science Advances, 2017, 3(4):e1602045.
    [5] Rodrigue H, Wang W, Kim D R, et al. Curved shape memory alloy-based soft actuators and application to soft gripper[J]. Composite Structures, 2017, 176:398-406.
    [6] Polygerinos P, Wang Z, Overvelde J T B, et al. Modeling of soft fiber-reinforced bending actuators[J]. IEEE Transactions on Robotics, 2015, 31(3):778-789.
    [7] Fei Y Q, Wang J B, Pang W. A novel fabric-based versatile and stiffness-tunable soft gripper integrating soft pneumatic fingers and wrist[J]. Soft Robotics, 2019, 6(1):1-20.
    [8] Mosadegh B, Polygerinos P, Keplinger C, et al. Pneumatic networks for soft robotics that actuate rapidly[J]. Advanced Functional Materials, 2014, 24(15):2163-2170.
    [9] Xu Q P, Liu J Y. Effective enhanced model for a large deformable soft pneumatic actuator[J]. Acta Mechanica Sinica, 2020, 36(1):245-255.
    [10] Li Y Q, Chen Y H, Ren T, et al. Passive and active particle damping in soft robotic actuators[C]//2018 IEEE International Conference on Robotics and Automation (ICRA), May 21-25, 2018, Brisbane, QLD, Australia. IEEE, 2018:1547-1552.
    [11] Jiang P, Yang Y D, Chen M Z Q, et al. A variable stiffness gripper based on differential drive particle jamming[J]. Bioinspiration & Biomimetics, 2019, 14(3):036009.
    [12] Li Y T, Chen Y H, Yang Y, et al. Passive particle jamming and its stiffening of soft robotic grippers[J]. IEEE Transactions on Robotics, 2017, 33(2):446-455.
    [13] Chandler J H, Chauhan M, Garbin N, et al. Parallel helix actuators for soft robotic applications[J]. Frontiers in Robotics and AI, 2020, 7:119.
    [14] Ge L S, Wang T Y, Zhang N B, et al. Fabrication of soft pneumatic network actuators with oblique chambers[J]. Journal of Visualized Experiments:JoVE, 2018(138):58277.
    [15] Realmuto J, Sanger T. A robotic forearm orthosis using soft fabric-based helical actuators//20192nd IEEE International Conference on Soft Robotics (RoboSoft), April 14-18, 2019, Seoul, Korea (South). IEEE, 2019:591-596.
    [16] Gravagne I A, Rahn C D, Walker I D. Large deflection dynamics and control for planar continuum robots. IEEE/ASME Transactions on Mechatronics, 2003, 8(2):299-307.
    [17] Simaan N, Xu K, Kapoor A, et al. Design and integration of a telerobotic system for minimally invasive surgery of the throat. The International Journal of Robotics Research, 2009, 28(9):1134-1153.
    [18] Guan Q H, Sun J, Liu Y J, et al. Novel bending and helical extensile/contractile pneumatic artificial muscles inspired by elephant trunk. Soft Robotics, 2020, 7(5):597-614.
    [19] Webster R J, Jones B A. Design and kinematic modeling of constant curvature continuum robots:a review. International Journal of Robotics Research, 2010, 29(13):1661-1683.
    [20] Hannan M W, Walker I D. Kinematics and the implementation of an elephant's trunk manipulator and other continuum style robots. Journal of Robotic Systems, 2003, 20(2):45-63.
    [21] Neppalli S, Jones B A. Design, construction, and analysis of a continuum robot//2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 29-November 2, 2007, San Diego, CA, USA. IEEE, 2007:1503-1507.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李家兴,唐先智,陈元杰,罗继,江沛.一种新型螺旋变形软体驱动器建模方法及应用[J].重庆大学学报,2023,46(3):1-9,102.

复制
分享
文章指标
  • 点击次数:541
  • 下载次数: 848
  • HTML阅读次数: 794
  • 引用次数: 0
历史
  • 收稿日期:2021-03-03
  • 在线发布日期: 2023-03-28
文章二维码