摘要:准确、高效地识别路面附着系数为汽车主动安全系统提供了重要输入参数。笔者提出了基于Elman神经网络识别路面附着系数方法,采用Carsim/Simulink联合仿真,获取了某车辆的63个行驶工况,共20个重要动力学响应。构建了Elman神经网络的路面附着系数识别模型,对附着系数为0.2~0.9的路面进行了识别,识别平均绝对百分比误差为4.92%,准确率为91.22%。相对于传统的BP神经网络方法,该方法使路面附着系数的识别平均绝对百分比误差降低了2.24%,准确率提升了9.82%,并且在潮湿沥青路面以及干燥沥青路面进行了实车实验,验证了该方法的有效性、可行性。