基于DK聚类模型的多工况速度预测器
CSTR:
作者:
作者单位:

1.重庆大学 机械与运载工程学院,重庆 400044;2.重庆宗申氢能源动力科技有限公司,重庆 400054

作者简介:

马荣鸿(1995—),男,硕士研究生,主要从事燃料电池汽车智能化研究,(E-mail)839936427@qq.com。

通讯作者:

张财志,男,研究员,主要从事燃料电池汽车与系统集成研究,(E-mail)czzhang@cqu.edu.cn。

中图分类号:

基金项目:

国家自然科学基金资助项目(51806024);重庆市研究生科研创新项目(CYS19020);国家重点研发计划资助项目(2018YFB0105703)。


A multi-condition speed predictor based on a DK clustering model
Author:
Affiliation:

1.College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044, P. R. China;2.Chongqing Zongshen Hydrogen Energy Power Technology Co., Ltd., Chongqing 400054, P. R. China

Fund Project:

Supported by National Natural Science Foundation of China (51806024), the Graduate Scientific Research and Innovation Foundation of Chongqing, China (CYS19020), and the National Key Research and Development Program (2018YFB0105703).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    车辆速度预测能为新能源汽车的能量管理策略提供重要的信息,但要准确地预测车速存在诸多困难。为克服交通状况、车辆类型和驾驶员意图等确定或随机因素对车速预测造成干扰的问题,提出了一种基于DK(DTW-based K-means)聚类模型的多工况速度预测器,该预测器通过DK模型对车速序列进行工况划分,并结合一维卷积神经网络和长短期记忆神经网络预测各工况下的未来车速。基于所提出的预测器,讨论了不同的输入序列长度及聚簇数对该预测器的影响,并比较了该预测器与其他常用模型的性能。结果表明,该预测器具有较好的多工况适应性,预测精度比其他模型更高。

    Abstract:

    Vehicle speed prediction provides important information for the energy management strategy of new energy vehicles, but accurate vehicle speed prediction is challenging. In order to overcome the interference of deterministic or stochastic factors, e.g., the driving condition, driver’s intention and vehicle type, in this paper, a multi-condition speed predictor is proposed based on a DK (DTW-based K-means) clustering model. The speed predictor splits the vehicle speed sequences into different driving conditions by the DK clustering model, and the future vehicle speeds under different driving conditions are predicted by the sub-predictor which combines one-dimensional convolutional neural network (conv1D) and long short-term memory neural network (LSTM). Based on the proposed predictor, the effects of different input-sequence lengths and the number of clusters on the predictor are discussed. Moreover, the performance of the proposed predictor is compared with other commonly used models. The results show that the proposed predictor has better adaptability to multiple driving conditions, and the prediction accuracy is higher than other models.

    参考文献
    相似文献
    引证文献
引用本文

马荣鸿,许家敏,李进,袁洪根,张财志.基于DK聚类模型的多工况速度预测器[J].重庆大学学报,2023,46(4):1-12.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-03-05
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-05-12
  • 出版日期:
文章二维码