5G基站自适应天馈系统设计与建模
作者:
作者单位:

电子科技大学 信息与通信工程学院,成都 611731

作者简介:

沈煜航(1999—),男,硕士研究生,主要从事智慧通信网络与智能信息处理方向研究,(E-mail)shenyh327@163.com
王晟,男,教授,博士生导师,主要从事网络规划,下一代互联网与下一代光网络方向研究,(E-mail)wsh_keylab@uestc.edu.cn。

基金项目:

国家自然科学基金资助项目(62001087,62072079)。


Design and modeling of 5G base station adaptive antenna feed system
Author:
Affiliation:

School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China

Fund Project:

Supported by National Natural Science Foundation of China(62001087,62072079).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了提供一个各方面更优的全自动天面自适应调整方案,在降低维护成本的同时实现更优覆盖效果,从5G天面的信号辐射方向调整方法入手,对5G基站自适应天馈系统的智能调节系统设计关键技术进行研究,提出对基于深度强化学习的基站天面自适应调节策略。基于此设计了5G基站自适应天馈系统,可以使用电信公司RSRP信号覆盖地图作为数据源,获取当前状态的观测值并自动分析数据,对天面进行自动调整。在虚拟环境下,对基于强化学习的系统进行了模拟搭建与仿真训练,结果符合预期。

    Abstract:

    To provide a fully automatic antenna adaptive adjustment scheme with advantages of better performance, wider coverage and lower maintenance cost, the key design technologies of intelligent adjustment system of adaptive antenna feed system of 5g-based station are studied from the perspective of signal radiation direction adjustment of antenna panel. An adaptive adjustment strategy for base-station antenna based on deep reinforcement learning is proposed. The adaptive antenna feed system designed with the proposed strategy can use telecom RSRP coverage map as a data source, and obtain the current state of the observed values to automatically analyze data and adjust the antenna panels. In a virtual environment, the system based on reinforcement learning is simulated and trained, and the results are in line with expectations.

    参考文献
    [1] 周俊, 权笑, 马建辉. 5G无线优化面临的挑战及应对策略[J]. 电信科学, 2020, 36(1): 58-65.Zhou J, Quan X, Ma J H. Challenge and strategy of 5G radio optimization[J]. Telecommunications Science, 2020, 36(1): 58-65. (in Chinese)
    [2] 赵国锋, 陈婧, 韩远兵, 等. 5G移动通信网络关键技术综述[J]. 重庆邮电大学学报(自然科学版), 2015, 27(4): 441-452.Zhao G F, Chen J, Han Y B, et al. Prospective network techniques for 5G mobile communication: a survey[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2015, 27(4): 441-452. (in Chinese)
    [3] 杜威, 丁世飞. 多智能体强化学习综述[J]. 计算机科学, 2019, 46(8): 1-8.Du W, Ding S F. Overview on multi-agent reinforcement learning[J]. Computer Science, 2019, 46(8): 1-8. (in Chinese)
    [4] 殷昌盛, 杨若鹏, 朱巍, 等. 多智能体分层强化学习综述[J]. 智能系统学报, 2020, 15(4): 646-655.Yin C S, Yang R P, Zhu W, et al. A survey on multi-agent hierarchical reinforcement learning[J]. CAAI Transactions on Intelligent Systems, 2020, 15(4): 646-655. (in Chinese)
    [5] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533.
    [6] Goodfellow I, Bengio Y, Courville A, et al. Deep learning [M]. US:MIT press Cambridge, 2016.
    [7] Littman M L. Markov games as a framework for multi-agent reinforcement learning [J]. Machine Learning Proceedings, 1994: 157-163.
    [8] Foerster J N, Assael Y M, de Freitas N, et al. Learning to communicate with deep multi-agent reinforcement learning[EB/OL]. 2016: arXiv: 1605.06676. https://arxiv.org/abs/1605.06676.
    [9] Hong Z W, Su S Y, Shann T Y, et al. A deep policy inference Q-network for multi-agent systems[EB/OL]. 2017: arXiv: 1712.07893. https://arxiv.org/abs/1712.07893.
    [10] Hessel M, Modayil J, Van Hasselt H, et al. Rainbow: combining improvements in deep reinforcement learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 3215-3222.
    [11] Foerster J, Nardelli N, Farquhar G, et al. Stabilising experience replay for deep multi-agent reinforcement learning[C]//Proceedings of the 34th International Conference on Machine Learning - Volume 70. August 6 - 11, 2017, Sydney, NSW, Australia. New York: ACM, 2017: 1146–1155.
    [12] Babaeizadeh M, Frosio I, Tyree S, et al. GA3C: GPU-basedA3C for deep reinforcement learning[EB/OL]. 2016: arXiv: 1611.06256. https://arxiv.org/abs/1611.06256.
    [13] Abbas N, Zhang Y, Taherkordi A, et al. Mobile edge computing: a survey[J]. IEEE Internet of Things Journal, 2018, 5(1): 450-465.
    [14] 高松涛, 程日涛, 邓安达. 5G天馈系统下倾角设置原则研究[C]//5G网络创新研讨会(2020)论文集. 北京:移动通信,2020: 272-275.Gao ST , Cheng R T , Deng A D . Research on setting principle of dip angle of 5G antenna feed system [C]//5G Network Innovation Seminar (2020). Beijing, China: Mobile Communications, 2020: 272-275. (in Chinese)
    [15] Gupta A, Jha R K. A survey of 5G network: architecture and emerging technologies[J]. IEEE Access, 2015, 3: 1206-1232.
    [16] Galindo-Serrano A, Giupponi L. Distributed Q-learning for aggregated interference control in cognitive radio networks[J]. IEEE Transactions on Vehicular Technology, 2010, 59(4): 1823-1834.
    [17] Sklar B. Rayleigh fading channels in mobile digital communication systems Part II: Mitigation[J]. IEEE Communications Magazine, 1997, 35(7): 102-109.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

沈煜航,王晟.5G基站自适应天馈系统设计与建模[J].重庆大学学报,2023,46(4):89-96.

复制
分享
文章指标
  • 点击次数:300
  • 下载次数: 938
  • HTML阅读次数: 118
  • 引用次数: 0
历史
  • 收稿日期:2021-12-25
  • 在线发布日期: 2023-05-12
文章二维码