微观轨迹信息驱动的Bi-LSTM合流区车速预测
CSTR:
作者:
作者单位:

昆明理工大学 交通工程学院,昆明 650224

作者简介:

秦雅琴(1972—),女,博士,教授,主要从事驾驶人因安全、车路协同、系统仿真建模研究,(E-mail)qinyaqin@kust.edu.cn。

通讯作者:

谢济铭,男,博士,(E-mail)xiejiming@kust.edu.cn。

中图分类号:

基金项目:

国家自然科学基金资助项目(71861016);国家重点研发计划资助项目(2018YFB1600500)。


Bi-LSTM merging area speed prediction driven by microscopic trajectory information
Author:
Affiliation:

School of Transportation Engineering, Kunming University of Science and Technology,Kunming 650504, P. R. China

Fund Project:

Supported by National Natural Science Foundation of China(71861016), and National Key Research and Development Program of China(2018YFB1600500).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为明确城市快速路合流区的微观速度特性,确保车辆在衔接段运行速度协调可控,使车辆安全运行。首先,基于无人机高空视频,从广域视角提取了典型多车道交织区全样本高精度车辆轨迹数据,分析车速的累积频率、分布趋势、特征百分位值等运行特性。然后,基于可有效捕捉前向历史速度数据的变化特征的LSTM模型,构建Bi-LSTM车速预测模型;考虑到人工设置训练参数对模型预测性能的影响较大、时间较长,提出基于遗传算法优化的Bi-LSTM速度预测模型(GA-Bi-LSTM)。最后,以R2、Error Mean、Error StD、MSE、RMSE、NRMSE、秩相关rs这7类评价指标,建立多指标融合的评价方案。结果表明:GA-Bi-LSTM速度预测模型表现较优,拟合指标R2、秩相关rs分别为0.904 6、0.949 5,误差指标Error Mean、Error StD、MSE、RMSE、NRMSE分别为0.004 1、0.447 0、0.199 7、0.446 9、0.076 5。研究成果可为城市快速路的合流区车速调控提供理论依据。

    Abstract:

    In order to guarantee the vehicle safety, it is necessary to clarify the microscopic speed characteristics of the urban expressway merging area and to ensure the coordination and control of the vehicle speed in the area. First, after the full-sample high-precision vehicle trajectory data of typical multi-lane interweaving area were extracted from a wide-area view based on the UAV overhead video, the operational characteristics of vehicle speed, such as cumulative frequency, distribution trend, and characteristic percentile value, were analyzed. Then, the Bi-LSTM vehicle speed prediction model was constructed based on the LSTM model that could effectively capture the change characteristics of forward historical speed data. Considering the significant effect of manual setting of training parameters on the model prediction performance and the long time they take, the Bi-LSTM speed prediction model based on genetic algorithm optimization (GA-Bi-LSTM) was proposed. Finally, a multi-metric fusion evaluation scheme was established with seven types of evaluation metrics, namely, R2, Error Mean, Error StD, MSE, RMSE, NRMSE, and Rank Correlation. The results show that the GA-Bi-LSTM speed prediction model performs better, with the fitting indicators R2 and Rank Correlation rs of 0.904 6 and 0.949 5, respectively, and the error indicators Error Mean, Error StD, MSE, RMSE, and NRMSE of 0.004 1,0.447 0,0.199 7,0.446 9 and 0.076 5, respectively. The findings can provide a theoretical basis for speed regulation in merging zones of urban expressways.

    参考文献
    相似文献
    引证文献
引用本文

秦雅琴,夏玉兰,钱正富,谢济铭.微观轨迹信息驱动的Bi-LSTM合流区车速预测[J].重庆大学学报,2023,46(4):120-128.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-02-28
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-05-12
  • 出版日期:
文章二维码