面向云边协同的配电变压器运行状态评估及态势预测
作者:
作者单位:

1.中国电力科学研究院有限公司,北京 100192;2.重庆大学 自动化学院,重庆 400044;3.国网山东省电力公司电力科学研究院,济南 250000

作者简介:

张波(1984—),男,博士,高级工程师,主要从事配电网运行与控制、微电网技术等研究,(E-mail)zhangbo1@epri.sgcc.com.cn。

通讯作者:

范敏,女,副教授,(E-mail)fanmin@cqu.edu.cn。

基金项目:

国家电网有限公司总部科技项目(5206001900F7)。


Operation state assessment and situation prediction of distribution transformer for cloud edge collaboration
Author:
Affiliation:

1.China Electric Power Research Institute, Beijing 100192, P. R. China;2.College of Automation, Chongqing University, Chongqing 400044, P. R. China;3.State Grid Shandong Electric Power Research Institute, Jinan 250000, P. R. China

Fund Project:

Supported by the State Grid Corporation of China Science and Technology (5206001900F7).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    随着电力物联网建设的高速推进,在配电物联网“云管边端”建设体系指导下,文章提出一种配电变压器运行状态评估与趋势预测通用技术架构。该架构将分别部署在云中心与边缘节点处,在云边协同机制支持下分析处理海量电力数据,完成对大规模配电变压器集群的运行管理。具体流程包括提取配电变压器基础状态、即时状态、累积状态等多维特征,构建评估指标体系,通过动态评估模型实现对配电变压器运行状态的实时画像描述;根据特征数据流的时序性和变化趋势,借助长短期记忆循环神经网络提取数据规律,结合支持向量回归模型进行预测,获得未来时段的特征数据流,并以此输入动态评估模型,实现配电变压器未来运行态势预测。最后,通过实例论证了该技术架构的适用性和先进性。

    Abstract:

    The construction of the Power Internet of Things has been under rapid progress. With the guidance of the “cloud-pipe-edge-terminal” construction system, this paper presents a general technical framework for operation state evaluation and trend prediction of distribution transformer. The framework is deployed in cloud center and edge nodes, and use the cloud edge collaboration mechanism to analyze and process massive power data so as to complete the operation management of large-scale distribution transformer cluster. The specific process includes extracting multi-dimensional characteristics of distribution transformer, such as basic state, real-time state and cumulative state, constructing evaluation index system, and realizing real-time portrait description of distribution transformer operation state through dynamic evaluation model. According to the time order and change trend of the characteristic data stream, Long Short-Term Memory network (LSTM) is used for extracting the regulations of characteristic data, and Support Vector Regression model (SVR) for its prediction. Then, the future characteristic data flow is obtained and input into the dynamic evaluation model to realize the future operation trend prediction of the distribution transformer. Finally, examples are given to illustrate the advanced nature and applicability of the technology framework.

    参考文献
    [1] 皮杰, 宋佳翰, 张先捷, 等. 基于故障本征证据和特征指标的换流变压器状态评估[J]. 电力自动化设备, 2020, 40(6): 128-134.Pi J, Song J H, Zhang X J, et al. Condition assessment of converter transformer based on intrinsic fault evidences and characteristic indicators[J]. Electric Power Automation Equipment, 2020, 40(6): 128-134.(in Chinese)
    [2] 杨欢红, 丁宇涛, 周敬嵩, 等. 基于最优权重和区间灰数动态灰靶的变压器状态评估[J]. 电力系统保护与控制, 2019, 47(7): 66-74.Yang H H, Ding Y T, Zhou J S, et al. A condition assessment method of transformers based on optimal weight and dynamic grey target with interval grey number[J]. Power System Protection and Control, 2019, 47(7): 66-74.(in Chinese)
    [3] 彭道刚, 陈跃伟, 范俊辉, 等. 基于层次分析法和粗糙集的变压器状态评估研究[J]. 高压电器, 2019, 55(7): 150-157.Peng D G, Chen Y W, Fan J H, et al. Research on assessment of transformer state using analytic hierarchy process and rough set theory[J]. High Voltage Apparatus, 2019, 55(7): 150-157.(in Chinese)
    [4] Zhang X, Li J L, Liu G Z, et al. Transformers condition evaluation based on Bayesian classifier[J]. IOP Conference Series: Materials Science and Engineering, 2018, 452: 042031.
    [5] 谢成, 曹张洁, 温典, 等. 基于实时运行数据挖掘的配电变压器状态评估[J]. 浙江电力, 2017, 36(8): 1-6.Xie C, Cao Z J, Wen D, et al. State evaluation of distribution transformers based on real-time operation data mining[J]. Zhejiang Electric Power, 2017, 36(8): 1-6.(in Chinese)
    [6] 宋人杰, 刘瑞英, 王林. 灰色定权聚类和变权模式在变压器状态评估中的应用研究[J]. 电工电能新技术, 2017, 36(3): 75-80.Song R J, Liu R Y, Wang L. Application of grey fixed weight clustering and variable weight model in transformer condition evaluation[J]. Advanced Technology of Electrical Engineering and Energy, 2017, 36(3): 75-80.(in Chinese)
    [7] Jasni J, Azmi A, Azis N, et al. Assessment of transformer health index using different model[J]. Pertanika Journal of Science and Technology, 2017, 25(1):143-150.
    [8] 章亮, 杨俊杰. 基于多维正态云模型的电力变压器状态评估[J]. 电测与仪表, 2020, 57(4): 129-135.Zhang L, Yang J J. State assessment of power transformers based on multi-dimensional normal cloud model[J]. Electrical Measurement & Instrumentation, 2020, 57(4): 129-135.(in Chinese)
    [9] 谭贵生, 曹生现, 赵波, 等. 基于关联规则与变权重系数的变压器状态综合评估方法[J]. 电力系统保护与控制, 2020, 48(1): 88-95.Tan G S, Cao S X, Zhao B, et al. An assessment of power transformers based on association rules and variable weight coefficients[J]. Power System Protection and Control, 2020, 48(1): 88-95.(in Chinese)
    [10] 吴广宁, 夏国强, 粟茂, 等. 基于频域介电谱和补偿因子的油纸绝缘水分含量和老化程度评估方法[J]. 高电压技术, 2019, 45(3): 691-700.Wu G N, Xia G Q, Su M, et al. Evaluation method for moisture content and aging degree of transformer oil-paper insulation based on frequency dielectric spectroscopy and compensation factor[J]. High Voltage Engineering, 2019, 45(3): 691-700.(in Chinese)
    [11] Okabe S, Kaneko S, Kohtoh M, et al. Analysis results for insulating oil components in field transformers[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(1): 302-311.
    [12] 杨志淳,靖晓平,乐健,等.基于MI-PSO-BP算法的配电设备状态实时评估方法[J].电力自动化设备,2019,39(12):108-113.Yang Z C, Jing X P, Le J, et al. Real-time condition assessment method based on MI-PSO-BP algorithm for distribution equipment[J]. Electric Power Automation Equipment,2019,39(12):108-113. (in Chinese)
    [13] 徐岩,陈昕.基于合作博弈和云模型的变压器状态评估方法[J].电力自动化设备,2015,35(3):88-93.Xu Y, Chen X. Transformer status assessment based on cooperative game and cloud model[J]. Electric Power Automation Equipment, 2015, 35(3):88-93. (in Chinese)
    [14] 阮羚, 谢齐家, 高胜友, 等. 人工神经网络和信息融合技术在变压器状态评估中的应用[J]. 高电压技术, 2014, 40(3): 822-828.Ruan L, Xie Q J, Gao S Y, et al. Application of artificial neural network and information fusion technology in power transformer condition assessment[J]. High Voltage Engineering, 2014, 40(3): 822-828.(in Chinese)
    [15] 刘兴平. 配电变压器健康状态在线监测与评估方法研究[D]. 重庆: 重庆大学, 2013.Liu X P. Study on on-line monitoring and assessment for health status of distribution transformers[D]. Chongqing: Chongqing University, 2013. (in Chinese)
    [16] 陈一鸣, 梁军, 张静伟, 等. 基于改进参数辨识的三绕组变压器绕组状态在线监测方法[J]. 高电压技术, 2019, 45(5): 1567-1575.Chen Y M, Liang J, Zhang J W, et al. Method of online status monitoring for windings of three-winding transformer based on improved parameter identification[J]. High Voltage Engineering, 2019, 45(5): 1567-1575.(in Chinese)
    [17] 陆继翔, 张琪培, 杨志宏, 等. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(8): 131-137.Lu J X, Zhang Q P, Yang Z H, et al. Short-term load forecasting method based on CNN-LSTM hybrid neural network model[J]. Automation of Electric Power Systems, 2019, 43(8): 131-137.(in Chinese)
    [18] Jin X B, Wang H X, Wang X Y, et al. Deep-learning prediction model with serial two-level decomposition based on Bayesian optimization[J]. Complexity, 2020: 1-14.
    [19] 周湶, 孙超, 安文斗, 等. 基于云推理及加权隐式半Markov模型的变压器故障预测[J]. 高电压技术, 2015, 41(7): 2268-2275.Zhou Q, Sun C, An W D, et al. Transformer failure prediction based on cloud reasoning and weighted implicit semi-Markov model[J]. High Voltage Engineering, 2015, 41(7): 2268-2275.(in Chinese)
    [20] 代杰杰, 宋辉, 盛戈皞, 等. 采用LSTM网络的电力变压器运行状态预测方法研究[J]. 高电压技术, 2018, 44(4): 1099-1106.Dai J J, Song H, Sheng G H, et al. Prediction method for power transformer running state based on LSTM network[J]. High Voltage Engineering, 2018, 44(4): 1099-1106.(in Chinese)
    [21] Al Ridhawi I, Otoum S, Aloqaily M, et al. Providing secure and reliable communication for next generation networks in smart cities[J]. Sustainable Cities and Society, 2020, 56: 102080.
    [22] Zhao J H, Li Q P, Gong Y, et al. Computation offloading and resource allocation for cloud assisted mobile edge computing in vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 7944-7956.
    [23] Song F, Zhu M Q, Zhou Y T, et al. Smart collaborative tracking for ubiquitous power IoT in edge-cloud interplay domain[J]. IEEE Internet of Things Journal, 2020, 7(7): 6046-6055.
    [24] 罗浩, 陆文龙, 薛晨. 基于内存共享机制的容器间快速通信方法[J]. 华中科技大学学报(自然科学版), 2016, 44(11): 103-106,122.Luo H, Lu W L, Xue C. Fast communication method between containers based on memory sharing mechanism[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2016, 44(11): 103-106,122.(in Chinese)
    [25] 国家能源局. 中华人民共和国电力行业标准: DL/T 2106—2020 配网设备状态评价导则[S]. 北京: 中国电力出版社.National Energy Bureau of the People's Republic of China. DL/T 2106—2020 Electricity & Power Standard of the People's Republic of China: Guide for state evaluation of distribution network equipment [S]. Beijing: China Electric Power Press. (in Chinese)
    [26] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
    [27] Tan Z F, De G, Li M L, et al. Combined electricity-heat-cooling-gas load forecasting model for integrated energy system based on multi-task learning and least square support vector machine[J]. Journal of Cleaner Production, 2020, 248: 119252.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张波,刘海涛,彭港,范敏,贾世韬,孙勇.面向云边协同的配电变压器运行状态评估及态势预测[J].重庆大学学报,2023,46(5):50-61.

复制
分享
文章指标
  • 点击次数:334
  • 下载次数: 956
  • HTML阅读次数: 95
  • 引用次数: 0
历史
  • 收稿日期:2021-06-10
  • 在线发布日期: 2023-05-31
文章二维码