面向云边协同的配电变压器运行状态评估及态势预测
CSTR:
作者:
作者单位:

1.中国电力科学研究院有限公司,北京 100192;2.重庆大学 自动化学院,重庆 400044;3.国网山东省电力公司电力科学研究院,济南 250000

作者简介:

张波(1984—),男,博士,高级工程师,主要从事配电网运行与控制、微电网技术等研究,(E-mail)zhangbo1@epri.sgcc.com.cn。

通讯作者:

范敏,女,副教授,(E-mail)fanmin@cqu.edu.cn。

中图分类号:

基金项目:

国家电网有限公司总部科技项目(5206001900F7)。


Operation state assessment and situation prediction of distribution transformer for cloud edge collaboration
Author:
Affiliation:

1.China Electric Power Research Institute, Beijing 100192, P. R. China;2.College of Automation, Chongqing University, Chongqing 400044, P. R. China;3.State Grid Shandong Electric Power Research Institute, Jinan 250000, P. R. China

Fund Project:

Supported by the State Grid Corporation of China Science and Technology (5206001900F7).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着电力物联网建设的高速推进,在配电物联网“云管边端”建设体系指导下,文章提出一种配电变压器运行状态评估与趋势预测通用技术架构。该架构将分别部署在云中心与边缘节点处,在云边协同机制支持下分析处理海量电力数据,完成对大规模配电变压器集群的运行管理。具体流程包括提取配电变压器基础状态、即时状态、累积状态等多维特征,构建评估指标体系,通过动态评估模型实现对配电变压器运行状态的实时画像描述;根据特征数据流的时序性和变化趋势,借助长短期记忆循环神经网络提取数据规律,结合支持向量回归模型进行预测,获得未来时段的特征数据流,并以此输入动态评估模型,实现配电变压器未来运行态势预测。最后,通过实例论证了该技术架构的适用性和先进性。

    Abstract:

    The construction of the Power Internet of Things has been under rapid progress. With the guidance of the “cloud-pipe-edge-terminal” construction system, this paper presents a general technical framework for operation state evaluation and trend prediction of distribution transformer. The framework is deployed in cloud center and edge nodes, and use the cloud edge collaboration mechanism to analyze and process massive power data so as to complete the operation management of large-scale distribution transformer cluster. The specific process includes extracting multi-dimensional characteristics of distribution transformer, such as basic state, real-time state and cumulative state, constructing evaluation index system, and realizing real-time portrait description of distribution transformer operation state through dynamic evaluation model. According to the time order and change trend of the characteristic data stream, Long Short-Term Memory network (LSTM) is used for extracting the regulations of characteristic data, and Support Vector Regression model (SVR) for its prediction. Then, the future characteristic data flow is obtained and input into the dynamic evaluation model to realize the future operation trend prediction of the distribution transformer. Finally, examples are given to illustrate the advanced nature and applicability of the technology framework.

    参考文献
    相似文献
    引证文献
引用本文

张波,刘海涛,彭港,范敏,贾世韬,孙勇.面向云边协同的配电变压器运行状态评估及态势预测[J].重庆大学学报,2023,46(5):50-61.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-06-10
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-05-31
  • 出版日期:
文章二维码