利用图像掩膜优化基于生成对抗网络的图像超分辨率模型
CSTR:
作者:
作者单位:

1.上海科技大学 信息学院,上海 201210;2.中国科学院 上海微系统与信息技术研究所,上海 200050;3.中国科学院大学,北京 100049

作者简介:

蒋琪雷(1995—),男,硕士,主要从事计算机图形学与计算机视觉方向研究,(E-mail)jiangql1@shanghaitech.edu.cn。

通讯作者:

中图分类号:

基金项目:

国家重点研发资助计划(2018YFB2100500);国家自然科学基金资助项目(61976138; 61977047)。


Optimization of generative adversarial network based image super-resolution by using image mask
Author:
Affiliation:

1.School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China;2.Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China;3.University of Chinese Academy of Sciences, Beijing 100049, P. R. China

Fund Project:

Supported by the National Key Research and Development Program (2018YFB2100500) and National Natural Science Foundation of China (61976138, 61977047).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    深度学习在一定程度上解决了从低分辨率图像中恢复出高分辨率图像这一图像超分辨率问题。目前基于生成对抗网络(generative adversarial network,GAN)的方法可以从超分辨率数据集中学习低/高分辨率图像映射关系,从而生成具有真实纹理细节的超分辨率图像。然而,基于GAN的图像超分辨率模型训练通常不稳定,其结果往往带有纹理扭曲和噪声等问题,提出了采用掩膜(mask)模块以辅助对抗网络训练。在网络训练过程中,掩膜模块根据生成网络输出的超分辨率结果和原始高分辨率图像,计算得到相应观感质量信息,并进一步辅助对抗网络训练。在实验中对3个最近提出的基于GAN的图像超分辨率模型进行修改,引入掩膜模块,修改后的模型在超分辨率图像输出的观感和真实感量化指标上均有明显地提升。掩膜模块的优点是可以进一步提升基于GAN的图像超分辨率网络输出的超分辨率图像观感质量,并仅需对生成对抗网络训练框架进行修改,因此适用于多数基于GAN的图像超分辨率模型的进一步优化。

    Abstract:

    Inferring high resolution image from single low resolution (LR) input is ill-posed and deep learning helps to some extent. The latest algorithms take the advantage of the Generative Adversarial Network (GAN) and present photo-realistic results by learning low/high resolution mappings from super resolution datasets. However, training of GANs can be hard and traditional GAN-based architectures often exhibit noise and texture distortion in their super-resolution (SR) results. In this paper, a mask-aided adversarial training strategy for current GAN-based SR frameworks is proposed. During training, mask module helps the discriminator by introducing additional perceptual quality information with generator’s outputs and the ground truth images. In experiment, three current state-of-the-art GAN-based SR models are selected and the mask module is integrated into their adversarial training. The improved mask-aided models yield better results in both quantitative and qualitative benchmarks than the original ones. Mask module only modifies GAN framework and thus is suitable for many GAN-based solutions for further improving the SR perceptual quality.

    参考文献
    相似文献
    引证文献
引用本文

蒋琪雷,马原曦.利用图像掩膜优化基于生成对抗网络的图像超分辨率模型[J].重庆大学学报,2023,46(5):93-101.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-03-11
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-05-31
  • 出版日期:
文章二维码