面向功能分区的大型商场建筑冷负荷预测方法
CSTR:
作者:
作者单位:

1.西安建筑科技大学,建筑设备与工程学院,西安 710055;2.西安建筑科技大学,信息与控制工程学院,西安 710055;3.中国建筑西北设计研究院有限公司,西安 710018

作者简介:

赵安军(1975—),男,西安建筑科技大学副教授,硕士生导师,主要研究方向为建筑物联网、建筑节能与能效分析、建筑设备控制与优化。

通讯作者:

荆竟 (1982—),男,高级工程师,(E-mail) xby5s@163.com。

中图分类号:

TP391.9

基金项目:

国家重点研发计划资助项目(2017YFC0704100)。


A cold load prediction method of shopping malls oriented to functional zoning
Author:
Affiliation:

1. School of Building Services Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, P. R. China; ,;2.School of Information and Control Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, P. R. China; ,;3.China Northwest Architecture Design and Research Institute, Xi’an 710018, P. R. China

Fund Project:

Supported by National Key Research and Development Program(2017YFC0704100).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对大型商场面向建筑整体冷负荷预测不能为商场各区域按需供冷提供合理控制策略的问题,通过研究商场不同区域冷负荷特点,采用灰色关联度分析法筛选影响商场不同区域冷负荷的关键影响因素,针对实际情况中各输入特征对冷负荷影响程度的不稳定性,提出了基于双重注意力机制和LSTM的短期分区冷负荷预测模型。LSTM网络充分考虑空调冷负荷与相关特征变量之间的非线性关系,特征注意力自主分析历史信息和输入变量之间的关系,提取重要特征,时序注意力选取LSTM网络关键时刻的历史信息,提升较长时间段预测效果的稳定性。以西安某大型商场建筑的冷负荷数据集为实验数据,实验结果表明所提模型相比于LSTM模型、CNN-LSTM模型和Attention-LSTM模型,误差指标MAPE和RMSE均有显著降低,R2明显增加且稳定0.99以上,具有较好的泛化能力和较强的稳定性。

    Abstract:

    Current cooling load prediction method of overall buildings for large-scale shopping malls cannot provide a reasonable control strategy for demands of various areas of the shopping mall. By studying the characteristics of cooling load in different areas of shopping malls, the key influencing factors of cooling load in different areas of shopping malls were screened by using grey relational degree analysis method. To solve the instability of the influence degree of each input variable on cooling load in actual situation, a short-term zoned cooling load prediction model based on double attention mechanism and LSTM was proposed. LSTM network fully considers the nonlinear relationship between air-conditioning cooling load and related characteristic variables. Feature attention analyzes the relationship between historical information and input variables autonomously to extract important features. Sequential attention selects historical information at critical moments of LSTM network to improve the stability of long-term prediction effects. The experimental results show that compared with LSTM model, CNN-LSTM model and attention-LSTM model, the error indexes MAPE and RMSE of the proposed model decrease significantly, and its R2 increases significantly and remains stable above 0.99, indicating good generalization ability and strong stability.

    参考文献
    相似文献
    引证文献
引用本文

赵安军,杨航杰,荆竞,张萌芝,焦阳.面向功能分区的大型商场建筑冷负荷预测方法[J].重庆大学学报,2023,46(6):61-75.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-10-30
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-27
  • 出版日期:
文章二维码