输入受限下机器人关节神经网络自适应控制
作者:
作者单位:

重庆大学 机械传动国家重点实验室,重庆 400044

作者简介:

雷源(1996—),男,硕士研究生,主要从事精密减速器研究,(E-mail)1310145469@qq.com。

通讯作者:

李俊阳,男,副教授,博士生导师,主要从事精密传动研究,(E-mail) lijunyang1982@sina.com。

中图分类号:

TP273.2

基金项目:

国家重点研发计划(2018YFB1304800)。


Neural network adaptive control of the robot joint with limited input
Author:
Affiliation:

State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing 400044, P. R. China

Fund Project:

Supported by the National Key Research and Development Program (2018YFB1304800).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • | | | |
  • 文章评论
    摘要:

    针对机器人关节控制输入受限以及动力学模型中存在非线性摩擦、柔性变形和未知外部干扰力矩等问题,提出了一种基于径向基函数(radial basis function, RBF)神经网络的输入饱和指令滤波自适应控制方法。基于指令滤波反步法,采用饱和函数约束控制输入的幅值,使用RBF神经网络在线逼近未知干扰,并利用Lyapunov稳定性理论证明了闭环系统的所有误差最终一致有界。仿真结果表明,控制算法不仅使系统的控制输入幅值被严格约束在规定的范围之内,完成了对目标轨迹的高精度跟踪(跟踪误差约为±0.003 rad),而且还可抵抗外部阶跃干扰力矩和建模误差对控制系统的不良影响,保证系统的高精度与强鲁棒性,性能优于PID (propotional integral derivative)控制和普通指令滤波反步控制(command filter backstepping control, CFBC),对机器人关节在高精度领域应用与智能控制具有重要价值。

    Abstract:

    An adaptive control method of input saturation command filtering based on radial basis function (RBF)neural network was proposed to solve the problems of limited control input, nonlinear friction, flexible deformation and unknown disturbance torque in the dynamic model of the robot joint. Based on the instruction filter backstepping method, the saturation function was used to constrain the amplitude of control input and the RBF neural network was used to approach the unknown disturbances. All the errors of the closed-loop system were proved ultimately uniformly bounded by using the Lyapunov stability theory. The simulation results show that the proposed control algorithm not only makes the control input amplitude of the system strictly constrained within the specified range, but also completes the high-precision tracking of the target trajectory (the tracking error is about ±0.003 rad). It can also resist the adverse effects of external step disturbance torque and modeling error on the control system, ensuring high accuracy and strong robustness of the system. The performance of the proposed control method is better than PID (propotional integral derivative) control and ordinary CFBC (command filter backstepping control) methods. It is of great value to the application and intelligent control of the robot joint in high precision field.

    参考文献
    [1] Zhang H B, Pan B, Wang L, et al. Non-linear dynamic modeling and experiment of harmonic gear drive[J]. Applied Mechanics and Materials, 2014, 668/669: 217-220.
    [2] 魏新江, 张林青. 一类随机系统基于干扰观测器的抗干扰控制[J]. 控制与决策, 2017, 32(5): 939-942.Wei X J, Zhang L Q. Anti-disturbance control for a stochastic systems with disturbances based on disturbance observer[J]. Control and Decision, 2017, 32(5): 939-942. (in Chinese)
    [3] 陈正升, 王雪松, 程玉虎. 考虑扰动与输入饱和的机械臂连续非奇异快速终端滑模控制[J]. 控制与决策, 2022, 37(4):903-912.Chen Z S, Wang X S, Cheng Y H. Continuous nonsingular fast terminal sliding mode control of manipulator considering disturbance and input saturation[J]. Control and Decision, 2022, 37(4):903-912.(in Chinese)
    [4] Chen M, Tao G, Jiang B. Dynamic surface control using neural networks for a class of uncertain nonlinear systems with input saturation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(9): 2086-2097.
    [5] 魏青铜, 陈谋, 吴庆宪. 输入饱和与姿态受限的四旋翼无人机反步姿态控制[J]. 控制理论与应用, 2015, 32(10): 1361-1369.Wei Q T, Chen M, Wu Q X. Backstepping-based attitude control for a quadrotor UAV with input saturation and attitude constraints[J]. Control Theory & Applications, 2015, 32(10): 1361-1369. (in Chinese)
    [6] 张春蕾, 王立东, 高闯, 等. 输入饱和及输出受限的纯反馈非线性系统控制[J]. 控制工程, 2021, 28(3): 531-539.Zhang C L, Wang L D, Gao C, et al. Pure feedback nonlinear system control with input saturation and output constraints[J]. Control Engineering of China, 2021, 28(3): 531-539. (in Chinese)
    [7] 王家序, 刘彪, 李俊阳, 等. 谐波驱动系统自适应神经网络动态面控制[J]. 华中科技大学学报(自然科学版), 2015, 43(10): 81-86.Wang J X, Liu B, Li J Y, et al. Adaptive neural-network dynamic surface control of the harmonic drive system[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015, 43(10): 81-86. (in Chinese)
    [8] Fu C, Zhao L, Yu J P, et al. Neural network-based command filtered control for induction motors with input saturation[J]. IET Control Theory & Applications, 2017, 11(15): 2636-2642.
    [9] Su J Y, Chen W H, Li B B. High order disturbance observer design for linear and nonlinear systems[C]//2015 IEEE International Conference on Information and Automation, August 8-10, 2015, Lijiang, China. IEEE, 2015: 1893-1898.
    [10] Lee K, Ha W, Back J. Overview of disturbance observation techniques for linear and nonlinear systems[J]. Journal of Institute of Control, Robotics and Systems, 2016, 22(5): 332-338.
    [11] Farrell J A, Polycarpou M, Sharma M, et al. Command filtered backstepping[J]. IEEE Transactions on Automatic Control, 2009, 54(6): 1391-1395.
    [12] Dong W J, Farrell J A, Polycarpou M M, et al. Command filtered adaptive backstepping[J]. IEEE Transactions on Control Systems Technology, 2012, 20(3): 566-580.
    [13] Spong M W. Modeling and control of elastic joint robots[J]. Journal of Dynamic Systems, Measurement, and Control, 1987, 109(4): 310-318.
    [14] 姚光耀. 永磁同步电机全速域无位置传感器矢量控制系统研究[D]. 徐州: 中国矿业大学, 2018.Yao G Y. Research on full speed sensorless vector control system of permanent magnet synchronous motor[D]. Xuzhou: China University of Mining and Technology, 2018. (in Chinese)
    [15] 刘金琨. 滑模变结构控制MATLAB仿真: 基本理论与设计方法 [M]. 3版. 北京: 清华大学出版社, 2015.Liu J K. Sliding mode control design and MATLAB simulation: the basic theory and design method [M]. 3rd ed. Beijing: Tsinghua University Press, 2015. (in Chinese)
    [16] Lu Q, Gang T Q, Hao G B, et al. Compound optimal control of harmonic drive considering hysteresis characteristic[J]. Mechanical Sciences, 2019, 10(2): 383-391.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

雷源,李聪,宋延奎,李俊阳,王森.输入受限下机器人关节神经网络自适应控制[J].重庆大学学报,2023,46(6):101-111.

复制
分享
文章指标
  • 点击次数:446
  • 下载次数: 846
  • HTML阅读次数: 79
  • 引用次数: 0
历史
  • 收稿日期:2021-08-27
  • 在线发布日期: 2023-06-27
文章二维码