多目标优化最低代价无人机机巢选址方法研究
作者:
作者单位:

1.国网江苏省电力有限公司泰州供电公司,江苏 泰州 225300;2.中南大学 自动化学院,长沙 410083;3.国网江苏省电力有限公司,南京 210000

作者简介:

戴永东(1969—),男,高级工程师,主要从事智慧电网技术、智能运检技术、无人机智慧巡检技术方向研究,(E-mail)dyd1969@163.com。

通讯作者:

王茂飞,男,工程师,(E-mail)wmf919077969@163.com。

基金项目:

湖南省自然科学基金资助项目(2022JJ30742)。


A UAV nest deployment method with multi-target optimization and minimum cost
Author:
Affiliation:

1.State Grid Taizhou Power Supply Company, Taizhou, Jiangsu 225300, P. R. China;2.School of Automation, Central South University, Changsha 410083, P. R. China;3.State Grid Jiangsu Electric Power Company, Nanjing 210000, P. R. China

Fund Project:

Supported by Natural Science Foundation of Hunan Province of China(2022JJ30742) .

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • | | | |
  • 文章评论
    摘要:

    无人机巡检作业中,因为功能与续航距离不同,常面临异构无人机协同和机巢选址问题。无人机机巢的最优部署位置策略,可以看作新的选址优化问题,相对于传统设施选址问题,无人机机巢部署问题面临更多新挑战。笔者综合运用地理信息系统、优劣解距离法对候选点位做预筛选后使用贪心算法和拉格朗日松弛优化的p-中值覆盖问题优化方法,在综合考虑布点原则、飞行任务、飞行半径、功能性冗余等目标因素,提出一种多目标优化最低代价的无人机机巢选址法,将机巢分布问题定义为限制因素预选址前提下的p-中值最低代价问题,设置原则性约束,实现多目标优化最低代价的机巢布点,从多个角度考虑降低巡检成本。实验结果表明:多目标优化后机巢布点在建造、维护、巡检和综合成本上比传统选点方法有9.2%以上的成本节约。

    Abstract:

    In the unmanned aerial vehicle (UAV) inspection operation, heterogeneous UAVs often face coordination and nest site selection problems due to their different functions and range capabilities. The optimal deployment strategy of the UAV nest can be seen as a new type of location optimization problem. Compared with the traditional facility location problem, the deployment of the UAV nest is facing more new challenges. This paper comprehensively uses geographic information systems and TOPSIS method to pre-screen candidate locations, and then uses a combination of greedy algorithms and Lagrange relaxation optimization of the p-median coverage problem optimization method. After comprehensively considering factors such as node placement principles, flying tasks, flying radius, and functional redundancy, a multi-objective optimization lowest-cost UAV nest location method is proposed. The nest distribution problem is defined as a p-median problem with the lowest cost under pre-selected restricted factors, and principal constraints are set to achieve multi-objective optimization lowest-cost node placement and reduce inspection costs from multiple perspectives. The experimental results show that the cost savings of the nested distribution after multi-objective optimization are more than 9.2% compared with those of traditional methods in terms of construction, maintenance, inspection, and comprehensive costs.

    参考文献
    [1] 靳晓洁, 石建迈, 伍国华, 等. 无人机基站部署问题综述: 模型与算法[J]. 控制理论与应用, 2022, 39(12): 2219-2232.Jin X J, Shi J M, Wu G H, et al. Review of the UAV base station deployment problem: models and algorithms[J]. Control Theory & Applications, 2022, 39(12): 2219-2232.(in Chinese)
    [2] 刘芳正,马博闻,吕博枫等.一种面向移动边缘计算的无人机基站部署方法[J].计算机科学,2022,49(S2):848-854.Liu F Z, Ma B W, Lu B F, et al. An UAV base station deployment method for mobile edge computing[J]. Computer Science,2022,49(S2):848-854.(in Chinese)
    [3] 方云飞, 王晓园, 周珍, 等. 基于禁忌搜索的公共自行车站点及车道选址优化[J]. 重庆大学学报, 2020, 43(1): 19-27.Fang Y F, Wang X Y, Zhou Z, et al. Research of optimal layout of public bike stations and bike lanes based on tabu search[J]. Journal of Chongqing University (Natural Science Edition), 2020, 43(1): 19-27.(in Chinese)
    [4] Huang B,Lin J,Zheng X, et al. Airport site selection under complex airspace based on GIS[C]//Fourth International Conference on Transportation Engineering. October 19-20, 2013, Chengdu, China. Reston, VA, USA: American Society of Civil Engineers, 2013: 2188-2194.
    [5] Alves C J P, da Silva E J, Müller C, et al. Towards an objective decision-making framework for regional airport site selection[J]. Journal of Air Transport Management, 2020, 89: 101888.
    [6] 何尧, 舒富民, 郑皓文. 基于GIS多因素加权叠加的机场选址方法[J]. 中国民航大学学报, 2021, 39(4)42-47.He Y, Shu F M, Zheng H W. Site selection method of airport location based on GIS multi-factor weighted superposition[J]. Journal of Civil Aviation University of China, 2021, 39(4)42-47(in Chinese)
    [7] Wang J J, Jing Y Y, Zhang C F, et al. Review on multi-criteria decision analysis aid in sustainable energy decision-making[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2263-2278.
    [8] Feng S, XuL D. Decision support for fuzzy comprehensive evaluation of urban development[J]. Fuzzy Sets and Systems, 1999, 105(1): 1-12.
    [9] 陈俊锋, 翁建军, 吴兵, 等. 基于熵权-TOPSIS的水上机场选址研究[J]. 交通信息与安全, 2018, 36(2)112-119Chen J F, Weng J J, Wu B, et al. A facility location model based on entropy and TOPSIS for sea drones[J]. Journal of Transport Information and Safety, 2018, 36(2)112-119(in Chinese)
    [10] 种小雷, 雷继超, 张世迪, 等. 机场选址阶段不同场址净空条件的量化对比[J]. 科学技术与工程, 2020, 20(27): 11365-11370.Chong X L, Lei J C, Zhang S D, et al. Quantitative comparison of clearance conditions of different sites in airport location selection stage[J]. Science Technology and Engineering, 2020, 20(27): 11365-11370.(in Chinese)
    [11] 付蔷, 王诺. 机场选址对候鸟影响评价: 以大连为例[J]. 科学技术与工程, 2018, 18(19): 316-323.Fu Q, Wang N. Impact assessment of airport site selection on migratory birds—case of Dalian civil aviation airport[J]. Science Technology and Engineering, 2018, 18(19): 316-323.(in Chinese)
    [12] Church R, ReVelle C. The maximal covering location problem[J].Papers of the Regional Science Association, 1974, 32(1): 101-118.
    [13] 杨思颖. 基于空间-时间-电量网络的电动汽车充电站选址-路径问题研究[D]. 南京: 东南大学.Yang S Y. Research on location-routing problem of electric vehicle charging station based on space-time-electricity network[D]. Nanjing: Southeast University,. (in Chinese)
    [14] Hakimi. Optimal locations of switching centers and the absolute centers and the medians of a graph[J]. Operations Research,1964,12: 450-459.
    [15] Navi S P, Zeiny A S. New approach to improve classification accuracy using ant clony optimization[C]//2010 Fourth UKSim European Symposium on Computer Modeling and Simulation. November 17-19, 2010. Pisa, Italy: IEEE, 2011: 46-50.
    [16] Mirjalili S. Genetic algorithm[C]// Evolutionary Algorithms and Neural Networks. Cham: Springer, 2019: 43-55.
    [17] 吴钦钦, 王珂, 樊文有, 等. 基于连续空间需求的公共图书馆最大覆盖选址方法: 以武汉市主城区为例[J]. 地理与地理信息科学, 2020, 36(1)27-34, 99Wu Q Q, Wang K, Fan W Y, et al. Optimizing the public library location based on coverage maximization of continuous space demands: a case study of the downtown of Wuhan city[J]. Geography and Geo-Information Science, 2020, 36(1)27-34, 99(in Chinese)
    [18] Mozaffari M, Saad W, Bennis M, et al. Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage[J]. IEEE Communications Letters, 2016, 20(8): 1647-1650.
    [19] Lagum F, Bor-Yaliniz I, Yanikomeroglu H. Strategic densification with UAV-BSs in cellular networks[J]. IEEE Wireless Communications Letters, 2018, 7(3): 384-387.
    [20] 乔联宝. 覆盖类选址问题分类及研究综述[J]. 物流科技, 2015, 38(3): 59-66.Qiao L B. Classification and review on the covering facility location problem[J]. Logistics Sci-Tech, 2015, 38(3): 59-66.(in Chinese)
    [21] 田力. 输电线路无人机巡检综合应用研究[J]. 通讯世界, 2018(11): 215-216.Tian L. Research on comprehensive application of UAV patrol inspection for transmission lines[J]. Telecom World, 2018(11): 215-216.(in Chinese)
    [22] Zhu G. A new view of classification in astronomy with the archetype technique: an astronomical case of the NP-complete set cover problem[EB/OL]. 2016: arXiv: 1606.07156. https://arxiv.org/abs/1606.07156
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

戴永东,黄政,高超,王茂飞.多目标优化最低代价无人机机巢选址方法研究[J].重庆大学学报,2023,46(6):136-144.

复制
分享
文章指标
  • 点击次数:616
  • 下载次数: 1274
  • HTML阅读次数: 200
  • 引用次数: 0
历史
  • 收稿日期:2022-10-11
  • 在线发布日期: 2023-06-27
文章二维码