基于改进灰色-马尔可夫模型的LTE-R越区切换算法
CSTR:
作者:
作者单位:

兰州交通大学 自动化与电气工程学院,兰州 730070

作者简介:

范文静(1996—),女,硕士,主要从事铁路移动通信方向研究,(E-mail)527583518@qq.com。

通讯作者:

王瑞峰,女,教授,(E-mail) 3259203516@qq.com。

中图分类号:

U285.2

基金项目:

国家自然科学基金资助项目(61661027)。


Research on LTE-R handover algorithm based on improved grey-Markov model
Author:
Affiliation:

School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China

Fund Project:

Supported by National Natural Science Foundation of China (61661027).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    高速列车在越区切换过程中,由于路径损耗和地形等因素的影响,参考信号接收功率(reference signal receiving power, RSRP)会发生上下波动,采用基于A3事件的传统越区切换判决方法,会导致发生乒乓切换和切换成功率下降。文中提出基于改进灰色-马尔可夫模型的切换算法,改进灰色-马尔可夫模型对参考信号接收功率进行处理和预测,结合预承载方法,利用处理结果作为切换判决依据执行切换过程。仿真结果表明,采用改进切换算法,使列车接收到的源小区和目标小区RSRP值的波动情况得到明显改善,乒乓切换概率更低,切换成功率得以有效提高。

    Abstract:

    During the handover process of high-speed trains, the reference signal receiving power (RSRP) experiences fluctuations caused by path loss and terrain, leading to issues with the traditional A3 event-based handover decision method, such as ping-pong occurrences and a decrease in handover success rate. To address this problem, a handover algorithm based on an improved gray-Markov model is proposed. This algorithm processes and predicts the received power of the reference signal using an enhanced grey-Markov model. The handover process then utilizes the prediction results as the basis for the handover decision based on the preloading method. Simulation results demonstrate that the improved handover algorithm significantly reduces the fluctuation of RSRP values received by the train, lowers the probability of ping-pong handovers, and effectively improves the handover success rate.

    参考文献
    相似文献
    引证文献
引用本文

王瑞峰,范文静.基于改进灰色-马尔可夫模型的LTE-R越区切换算法[J].重庆大学学报,2023,46(7):44-52.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-04-12
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-08-02
  • 出版日期:
文章二维码