矩形板中应力波主波和次波的传播与反射
作者:
作者单位:

重庆大学 航空航天学院,重庆400044

作者简介:

李曦(1994—),男,硕士研究生,主要从事冲击破坏研究,(E-mail)961920449@qq.com
刘占芳,男,教授,博士生导师,(E-mail)zhanfang@cqu.edu.cn。

基金项目:

国家自然科学基金(11372365;U1830115)。


Propagation and reflection of stress wave about primary and secondary waves in rectangular plates
Author:
Affiliation:

College of Aerospace Engineering, Chongqing University, Chongqing 400044, P. R. China

Fund Project:

Supported by National Natural Science Foundation of China(11372365, U1830115).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    弹性应力波的修正理论指出关于体积应变的波动方程与现有理论一致,但发展了一组关于体积应变和偏应变的弱耦合波动方程。针对矩形板受侧向集中载荷冲击下应力波的波动问题,建立了应力波传播的两组控制方程以及加载面和自由面的波动边界条件。采用有限差分方法求解波动方程,数值分析了应力波关于主波和次波的传播以及自由面上斜入射波的反射过程。偏应变在传播过程中分裂为两部分,一部分与体积应变共同传播组成主波,另一部分传播较慢形成次波。数值模拟结果显示与冲击载荷下纳钙玻璃板中应力波的传播图像是完全符合的。

    Abstract:

    The modified theory of elastic stress waves asserts that the wave equations governing volume strain are consistent with existing theories, but a new set of weakly coupled wave equations encompassing both volume strain and partial strain has been developed. To address the problem of stress wave fluctuation caused by a concentrated load impact on a rectangular plate, two sets of control equations for stress wave propagation as well as the fluctuation boundary conditions of loading surface and free surface are established in this paper. The finite difference method is used to solve the wave equation, and the stress wave is simulated numerically for the propagation of the main and secondary waves and the reflection process of oblique incident waves on the free plane. During propagation, the partial strain splits into two parts: one part propagates together with the volume strain, forming the main wave, while the other part propagates at a slower pace, resulting in the formation of a secondary wave. The numerical simulation results show complete consistency with regard to the propagation image of the stress waves in the nanocalcium glass plate under shock loading.

    参考文献
    [1] 吴点宇, 李鑫, 张小刚, 等. 观察探测装置用透明装甲材料的设计研究[J]. 兵器材料科学与工程, 2022, 45(4): 75-79.Wu D Y, Li X, Zhang X G, et al. Design of transparent armor materials for observation and detection device[J]. Ordnance Material Science and Engineering, 2022, 45(4): 75-79.(in Chinese)
    [2] McCauley J W, Strassburger E, Patel P, et al. Experimental observations on dynamic response of selected transparent armor materials[J]. Experimental Mechanics, 2013, 53(1): 3-29.
    [3] 金键, 侯海量, 吴梵, 等. 战斗部近炸下防护液舱破坏机理分析[J]. 国防科技大学学报, 2019, 41(2): 163-169.Jin J, Hou H L, Wu F, et al. Analysis of failure mechanism on protective liquid cabin under warhead close explosion[J]. Journal of National University of Defense Technology, 2019, 41(2): 163-169. (in Chinese)
    [4] 冯爱新, 聂贵锋, 薛伟, 等. 2024铝合金薄板激光冲击波加载的实验研究[J]. 金属学报, 2012, 48(2): 205-210.Feng A X, Nie G F, Xue W, et al. Experimental research on laser shock wave loading mechanism of 2024 aluminum alloy sheet[J]. Acta Metallurgica Sinica, 2012, 48(2): 205-210.(in Chinese)
    [5] Neckel L, Hotza D, Stainer D, et al. Modelling of ballistic impact over a ceramic-metal protection system[J]. Advances in Materials Science and Engineering, 2013, 2013: 698476.
    [6] Ogawa K. Impact friction test method by applying stress wave[J]. Experimental Mechanics, 1997, 37(4): 398-402.
    [7] 余同希, 邱信明. 冲击动力学[M]. 北京: 清华大学出版社, 2011.Yu T X, Qiu X M. Impact dynamics[M]. 2nd edition. Beijing: Tsinghua University Press, 2011. (in Chinese)
    [8] Ibragimov N H, Ibragimov R N. Applications of lie group analysis in geophysical fluid dynamics[M]. Beijing: Higher Education Press, 2011.
    [9] 吴家龙. 弹性力学[M]. 北京: 高等教育出版社, 2001.Wu J L. Elasticity[M]. Beijing: Higher Education Press, 2001. (in Chinese)
    [10] 王礼立. 应力波基础[M]. 2版. 北京: 国防工业出版社, 2005.Wang L L. Foundation of stress waves[M]. Beijing: National Defense Industry Press, 2005. (in Chinese)
    [11] Achenbach J D. Wave propagation in elastic solids[M]. Amsterdam: Elsevier, 1973.
    [12] Graff K F. Wave motion in elastic solid[M]. New York: Dover Publications, Inc., 1975.
    [13] Meyers M. Dynamic behavior of materials[M]. John Wiley & Sons, 1994.
    [14] KolskyH. Stress waves in solids[M]. Courier Corporation, 1963.
    [15] 黄克智, 薛明德, 陆明万. 张量分析[M]. 3版. 北京: 清华大学出版社, 2020.Huang K Z, Xue M D, Lu M W. Tensor analysis[M]. 3rd edition. Beijing: Tsinghua University Press, 2020.(in Chinese)
    [16] 颜世军, 刘占芳. 修正的偶应力线弹性理论及广义线弹性体的有限元方法[J]. 固体力学学报, 2012, 33(3): 279-287.Yan S J, Liu Z F. A modified couple stress linear elasticity and finite element method for generalized elastic bodies[J]. Chinese Journal of Solid Mechanics, 2012, 33(3): 279-287.(in Chinese)
    [17] Liua Z F, Fu Z. Scale effects of the stress symmetry in generalized elasticity[J]. International Journal of Aerospace and Lightweight Structures (IJALS), 2013, 4(4): 509.
    [18] Antoun T, Curran D R, Sergey V, et al. Spall fracture[M]. New York: Springer, 2002.
    [19] Mikhailova N V, Petrov Y V. Effect of impact time parameters on the dynamic strength in spall fracture[J]. Physical Mesomechanics, 2021, 24(1): 9-13.
    [20] 刘占芳, 冯晓伟, 张凯, 等. 氧化铝陶瓷动态压缩强度的高压和高应变率效应[J]. 功能材料, 2010, 41(12): 2087-2090.Liu Z F, Feng X W, Zhang K, et al. Effects of high pressure and high strain rate on dynamic compressive strength of alumina[J]. Journal of Functional Materials, 2010, 41(12): 2087-2090.(in Chinese)
    [21] 刘占芳, 常敬臻, 唐录成, 等. 平面冲击波压缩下氧化铝陶瓷的动态强度[J]. 高压物理学报, 2007, 21(2): 129-135.Liu Z F, Chang J Z, Tang L C, et al. Dynamic strength of alumina under plane shock waves[J]. Chinese Journal of High Pressure Physics, 2007, 21(2): 129-135.(in Chinese)
    [22] Grujicic M, Pandurangan B, Coutris N, et al. A simple ballistic material model for soda-lime glass[J]. International Journal of Impact Engineering, 2009, 36(3): 386-401.
    [23] Kawai N, Zama S, Takemoto W, et al. Stress wave and damage propagation in transparent materials subjected to hypervelocity impact[J]. Procedia Engineering, 2015, 103: 287-293.
    [24] 范镜泓, 高芝晖. 非线性连续介质力学基础[M]. 重庆: 重庆大学出版社, 1987.Fan J H, Gao Z H. Fundamentals of nonlinear continuum mechanics[M]. Chongqing: Chongqing University Press, 1987.(in Chinese)
    [25] 刘占芳, 郭原, 唐少强, 等. 弹性应力波的双脉冲结构与平板冲击试验验证[J]. 应用数学和力学, 2018, 39(3): 249-265.Liu Z F, Guo Y, Tang S Q, et al. Dual pulse wave structure of elastic stress waves and plate impact verification[J]. Applied Mathematics and Mechanics, 2018, 39(3): 249-265.(in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李曦,刘占芳.矩形板中应力波主波和次波的传播与反射[J].重庆大学学报,2023,46(8):32-44.

复制
分享
文章指标
  • 点击次数:374
  • 下载次数: 810
  • HTML阅读次数: 94
  • 引用次数: 0
历史
  • 收稿日期:2022-05-30
  • 在线发布日期: 2023-08-25
文章二维码