基于Iterative映射和非线性拟合的鲸鱼优化算法
CSTR:
作者:
作者单位:

山东理工大学 计算机科学与计算学院,山东 淄博 255000

作者简介:

鞠传香(1978―),女,主要从事计算机算法方向研究,(E-mail)chuanxiangju@sina.com。

通讯作者:

中图分类号:

TP301.6

基金项目:

大学生创新创业训练计划项目;国家重点研发资助项目(2018YFB1402500)。Suporrted by Innovation Entrepreneurship Training Program for College Students and National Key R & D Project (2018YFB1402500).


Whale optimization algorithm based on iterative mapping and nonlinear fitting
Author:
Affiliation:

School of Computer Science and Technology, Shandong University of Technology, Zibo, Shandong 255000, P. R. China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决鲸鱼优化算法中收敛速度慢和寻优精度低等问题,提出一种基于Iterative映射和非线性拟合的鲸鱼优化算法(NWOA)。首先,该算法利用了Iterative映射对鲸鱼种群初始化,保证初始种群的多样性;其次,采用非线性拟合的策略对收敛因子和惯性权重进行改进,以平衡算法的全局勘测能力和局部开发能力。通过对13种函数进行仿真实验,从均方差和平均值的角度分析,改进后算法寻优精度显著提高,且稳定性较强。实验结果表明NWOA与传统的鲸鱼优化算法相比,收敛速度明显加快。

    Abstract:

    In order to solve the problems of slow convergence speed and low optimization accuracy in whale optimization algorithm, a whale optimization algorithm based on iterative mapping and nonlinear fitting(NWOA) is proposed. Firstly, iterative mapping is taken advantage to initialize whale population, which guarantees initial population diversity. Secondly, nonlinear fitting strategy is used to improve the convergence factor and inertia weight to balance the global survey ability and local development ability of the algorithm. Through the simulation test of 13 functions, the improved algorithm has a significant improvement in precision and stability from the point of mean square error and average value. The experimental results show that the convergence speed of the algorithm is faster than that of the traditional whale optimization algorithm.

    参考文献
    相似文献
    引证文献
引用本文

李赛宇,鞠传香,丁航奇.基于Iterative映射和非线性拟合的鲸鱼优化算法[J].重庆大学学报,2023,46(8):120-131.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-09-22
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-08-25
  • 出版日期:
文章二维码